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Geometrical optics approach in liquid crystal films with three-dimensional director variations
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A formal geometrical optics approadi&OA) to the optics of nematic liquid crystals whose optic axis
(directon varies in more than one dimension is described. The GOA is applied to the propagation of light
through liquid crystal films whose director varies in three spatial dimensions. As an example, the GOA is
applied to the calculation of light transmittance for the case of a liquid crystal cell which exhibits the homeo-
tropic to multidomainlike transitioHMD cell). Properties of the GOA solution are explored, and comparison
with the Jones calculus solution is also made. For variations on a smaller scale, where the Jones calculus breaks
down, the GOA provides a fast, accurate method for calculating light transmittance. The results of light
transmittance calculations for the HMD cell based on the director patterns provided by two methods, direct
computer calculation and a previously developed simplified model, are in good agreement.
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I. INTRODUCTION must lie in a plane, and that plane must be the plane of
incidence; reflections must be minimal. Within these bounds,
Optics is one of the primary empirical tools for investi- however, they demonstrated that the results of the BPM are
gating the physical behavior of liquid crystals. Optical mea-In excellent agreement with FDTD calculations even when
surements can be used to infer director orientation, identil‘ihe geometry is comparable in size Xo Furthermore, the
|

: ; : hnique is very amenable to numerical calculation, being
phases, and study the dynamics of director fluctuations. IF€¢ ;
addition, the optical behavior of liquid crystals is of techno- stable "?‘”0.' fast compared to th_e FDTD approach. Later, in
logical importance because of the use of liquid crystals i 11}, Kriezis and Elston generalized the proposed method to

. o . -~ " handle a liquid crystalLC) cell with a tilted-twisted director
display applications. As the physics and technology of liquid ofile, considering a light-wave propagation in a twisted
crystals advance, there is a need for better understanding 5L :

i X matic microdisplay pixel. Again, it has been shown that in
the optics at smaller and smaller feature sizes. The study gfs regime of validity the BPM can reproduce FDTD simula-

dgfect structures anq_ confinement of liquid crystals injons with good accuracy.
micrometer-sized cavities are two examples of areas of ac- |n this paper another description of the multidimensional
tive research. At the same time, microdisplays and switchpptics of liquid crystal media is considered, the geometrical
able diffractive elements for optical communications havegptics approachGOA), which bridges the gap between these
pushed applied research on liquid crystals into the micrometwo regimes. As is known, the GOA is applicable if the pa-
ter regime. rameterk = 1/kgl is small. Herd is the characteristic scale of
There have been several approaches to handling multidthe medium inhomogeneitit,=2x/\, andX is the vacuum
mensional optics calculations for liquid crystals. The sim-wavelength. In an anisotropic medium, which can be charac-
plest involves extending one-dimensional techniques such derized in our case by the dielectric tengofwe consider a
the 4X4 matrix methodq1] or the Jones calculug2]. In liquid crystal material without absorption or spatial disper-
these approaches, the liquid crystal is treated locally as hawion, whose magnetic permeability is equal tg The
ing index variations only along the direction of light propa- strength of the anisotropy can be described by the parameter
gation: lateral variations in optical properties are igndi@d ~ »=maXey— €, Whereep=3Tr & There is a substantial
The multidimensional behavior is then obtained as a comliterature on the GOA for isotropic media, where=0 (see,
posite of several one-dimensional calculations. This simpldor example,[12] and references thereon the one hand,
description should be applicable when the wavelength oftind, on the other hand, for anisotropic media with relatively

light \ is very small relative to the liquid crystal feature sizes Nigh birefringence, whem> « [12—14. In the latter case the
of interest. normal waves(ordinary and extraordinary waves in our

At the other extreme, when the feature sizes are smalle‘?mblems) can be trgated mdependent{;he Cquyant-Lax
method, and interaction between them is negligible. A rea-

than\, a direct solution of Maxwell's equations is required. . ;
Because of the complexity of any physically interestings’Onable and useful approach for studying wave propagation
through a medium with “weak” anisotropy, whenis of the

problem, no analytical solutions are possible, and compute

order of « (or v<k), was proposed and developed in
calculations are necessary. In this regard, the so-called finit€ 5 15 "1t was shown that in a region of weak birefringence
difference time domaifFDTD) method has been the mosttﬁL 16, It w W ! 9! w Iretring

X =7 - a strong interaction between the normal modes occurs, which
widely used[4-8]. Later, Kriezis and Elston introduced & |ga4s 10 a redistribution of energy between the normal waves.
wide-angle beam propagation methd8PM) for two-  The pasic assumption of this “quasi-isotropic approach,” de-

dimensional liquid crystal optics problerf8-11]. In [9,10,  scribed in detail if{16], is to use the isotropic form of geo-
their development had the following restrictions: the directormetrical optics equations as the zeroth approximation, and
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then to consider the anisotropy tensgg= €, — €,5;x as a  glecting contributions of the order o could be larger than
perturbation of the same order of magnitudexadThe ray  second ordefand higher geometrical optics corrections. In
path technique has also been employed in these studies. @der to describe regions whete- «, mode coupling be-
accordance with this technique, one determines first the rayveen ordinary and extraordinary waves is introduced, al-
trajectories together with the local wave vectés) along  though in a way different from the methods used16]. In
them, and' in the next Stage' one determines the amp“tude%c Il the mathematical formalism of the GOA in the case of
of normal waves along the rays, using moving coordinate liquid crystal cell with a multidimensional director distri-
systems attached to each ray. The method developed wR&tion is considered, and in Sec. Ill an application of the
apphed Successfu”y to different prob|emS, such as e|ectroGOA to a cell with a three-dimensional director is described.
magnetic wave propagation in plasnisolar, ionospheric,
laboratory and optical and elastic phenomena in crystals and Il. MATHEMATICAL ASPECTS OF THE GOA
deformed isotropic media. . . . o
Ong and Meyef17,18 and Ong[19,20] were the first to 'I_'he time-harmonic Yvave eqyatlon for the electric flelq is
apply geometrical optics extensively to liquid crystals. They?errr'r:/?r(]j frr?n;] Mr?gwet:lls gﬁli'at't?insmar;? ::f‘s the following
developed the theoretical framework for geometrical optics0 a nonconductive dielectric medium.
of liquid crystals in one dimension and applied the GOA to V2E—V(V.E)=(ikn)2eE 1
several basic and technological problems. Since then, the ( )= (iko)"eE. @
GOA has been applied to liquid crystal problems where therhe GOA uses an expansion for the electric figlth powers
director varies in two dimensions, with the same restrictiongf )
as mentioned above for the BPM: the director lies in a plane
which is also the plane of incidence. These restrictions re- , “ Eq(n)
move any coupling between the ordinary and extraordinary E(r)=gekoS1n (ko)™
rays, permitting a ray tracing approach to geometrical optics. m=0 1170
l;g;gorpaoyu't%ir?r?igusee?c?Ig'gjgcigarziZtr:jseec?c:rri];gggg](iar:;lecr?;iqand a similar expression for the magnetic field with the fol-
variations for light propagating through a periodically dis- owing substitution:E(r) —H(r) and E(r)—Hp(r). This

. : expansion is well justified whek is small relative to spatial
torted homogeneous nematic layer. Later, R8s applied variations ofE, andH,.

geometric optics to the multidimensional problem of a nem- In Eq. (2) [and the corresponding expression Fog(r)],

atic liquid crystal confined in a spherical cavity. He studied . . . .
the ray trajectories in the equatorial plane of a droplet withthe functionS(r) is the optical path length or, as it is some-

radial director configuration but did not explore the varia-t'r:nes callled,hth(T e|k|0nal. The surfgces .Of conzsggte o:j—
tions in field amplitude. Recently, Liu, Kelly, and Chen suc-t ogonal to the local wave vectpr lreqtlén(r)— ] an
cessfully applied the GOA to study the electro-optical per-are the wave T“’F‘ts of geometncal optics.

formance of a self-compensating vertically aligned liquid Alter substltutmgz Eq.(2) into Eq. (.1)’ the Io_vve_st order
crystal display cel[24], using a two-dimension&RD) liquid terms{of order (k)] give the following equation:

crystal display mode which combines the concepts of the , _ 2¢ , -

in-plane switching mode with vertical alignmefi#5,26. In V9V~ (VS 0t €ac]Ear=0 @

[27] the GOA coupled with Kirchhoft diffraction theory was (here and subsequently summing on repeated indices is as-
applied to study optical properties of a switchable diffractionsymeq, which is equivalent to three homogeneous linear

grating, where the same c¢5,26 was used. For this 2D equations for the three componentsggf. The compatability
cell it has also been shown that, for the conditions when th@ngitions of Eq(3) demand that

BPM is applicable, the GOA is in reasonable agreement with

BPM (and FDTD calculations even if is comparable with del(VS)i(VS)— (VS)26+ €| =0. (4)

\. This contrasts with the Jones calculus, which differs sig-

nificantly from the GOA, BPM, and FDTD results focom-  If one denotes;=(VS);, Eq. (4) formally coincides with
parable with\. the well known Fresnel equation for the vectoek/kg,

In our study we consider the GOA equations as partialwherek is the wave vector in the mediufsee, for example,
differential equations which follow directly from the Max- [28]). In our case, we have the following expression for the
well equations whem<1. In our opinion, this way of find- dielectric tensor;, through the directofi:
ing the GOA solutions is more convenient than the ray path
technique, because it employs a laboratory frafmenve- €= oS+ Aelny, )
nient for the LC cell under consideratipwithout resorting
to the curvilinear coordinate systems associated with raysyhere Ae=nZ—nj. Heren, and n, are the ordinary and
and a uniform mesh can be used. We do not consider thextraordinary indices of refraction. Calculating the determi-
anisotropy ofe as being small, and in the present studis ~ nant in Eq.(4) in a local coordinate system where the
the only small parameter. This is important because, even ifniaxial dielectric tensor is diagonal, one can rewrite @g).
v<1, the relationv~ « usually holds only in wall defect or as
near-substrate regions at a relatively high voltage. Outside s 2 s
these regions, howevers «, and the error related to ne- [(VS) —ngl[(VS)“—ngg]=0. (6)

@
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Equation(6) is an eigenvalue equation with two nondegen-

erate eigenvectors. One solution, which we denote, asr-
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dSe —B={B’+AC

e A , (16)

responds to the ordinary wave, whose eigenvalue satisfies the

characteristic equation
(VSo)?=nj, (7)

whereS, is the optical path length associated with this eigen

mode. The second eigenvector, designadeid the extraor-

dinary wave with characteristic equation
(VSe)®=ngy. ®)

The effective index of refraction in Eq$6) and (8) is de-
fined by the following expression:

nyN

where the plus sign describes the forward propagating wave
and the negative sign stands for the reflected wave. In what
follows, reflections are ignored. Equatio(¥ and(16) must
be solved with appropriate boundary conditions which de-
pend on the properties of the liquid crystal cell and the prop-
erties of the isotropic medium adjacent to the cell. A particu-
lar example of a 3D liquid crystal cell is considered in Sec.
Il

If S, andS, are known, Eq(3) allows one to obtain also
the directions of the electric vectors of the ordinaryand
extraordinarye waves. Substituting=S, into Eq.(3) gives
the following system of equations to determirig =0

E(OX,Oy,OZ)Z

et =Nen( @) = s "
ng sin“(a) +ng cos(a) cl90,=0, (17)
wherea is the angle betweeW S, and the(local) optic axis. here
Unlike the case of homogeneous anisotropic media consid”
ered in[28], here the directofi (and hence the optical axis Ci(f)=(VSo)i(VSo)k+A€ﬁiﬁk- (18)

is a function of the space coordinatesThis means that in
our inhomogeneous case the right-hand side of&8qgs also

a function ofVS, andf, which makes Eq(8) a complicated
partial differential equation. For further consideration of Eq
(8), it is convenient to eliminater from this equation using
Eqg. (9) and the relation

(10

Substituting Eq(10) into Eqg.(9), one can rewrite E(8) for
the extraordinary eikonal in the following form:
(VSo)2+A&(A-VS,)?=n? (11)
with Aeer/ng. Because all the expressions in E(.and
(10) are scalars, one can consider Efyl) in a laboratory

coordinate system.
Equation(11) can be rewritten as

S,

A(?Z

2+2|3 7S C=0 12
(92 — Y, ( )

where the coefficientd, B, andC can be expressed through
the director components anxdandy derivatives ofS, in the

following way:

A=1+Aeh2, (13
B=A¢g/n asey 7S 14
=AM TGy (14

9Ss\% [ 9Ss\? S 9Se]?

=n2—| = [ =8| —AdlA—C4+p—°

C=ng &x) (ay) A€l Ny o +ny3y} .

(15)

Because the determinant of this system is zero, two compo-
nents of the vectoo can be expressed through the third one,

-and one finds

0=Y(NyX+N,J+N,,2). (19
HereX, ¥, andz are the unit vectors of the laboratory frame,
and

(Ny X+ N, 9+ N,,2)=N=AXVS,. (20
The coefficient of proportionality in Eq. (19) is not unique.
A possible choice fory is y=(NJ,+NZ,+NZ) "2 which
makes the vectop a unit vector. In the same way, substitut-
ing S=S; into Eq.(3) produces a similar system of equations
to determine the extraordinary electric vectd&,=e

E(exveyaez):

[l — dnedilex=0, (21)
where
CiE = (VSe)i(VSe) i+ A ey
and
Sne=[(VSe)®—nj]. (22)

Using Eq.(11) for the extraordinary eikonal, one can express
(A-VS,)? throughdn,:

(ﬁ~VSe)2=n§(1—i> SNe. (23

On the other hand, a straightforward calculation shows that

Assume that light propagates in some direction in the hal{fAix VS,)?=(VS.)?— (A-VS.)?, which allows one eventu-

space of increasing coordinate. Equatiofl2) gives

ally to find én, as
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€
8ne=—7(Ng)? (24)
ne
with
Ne=AXV Sg=Ng X+ N7,§+Ng 2. (25)

As in the ordinary case, the determinant of the systethis
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duction, this term is important in regiorike a wall defect

or near-substrate regionshere the characteristic anisotropy
strengthy can be of order Xl (in these regions the charac-
teristic scale of the medium inhomogeneélitis of the order

of the correlation lengthé and is relatively small at high
voltages. Substituting this expression into the time-
harmonic wave equation and combining terms with the first
power ofiky, one can derive equations for the amplitudes

zero, and one can express again two components of the veg;  E_, and E. It is worth mentioning, again, that the

tor e through the third one. Using also the relati@4), one
finds that

e=7v'(bX+b,y+b,2), (26)

where
by=(Ne)?(nZ—cs) —n3(NS,)2, (27)
by=—(Ne)cly — NANG,NS,, (28)
b=~ (Ne)?cid —nZN§ N3, , (29)

and the proportionality coefficient in E(R6) may be chosen
as (OZ+bJ+b2) 2 which makese, as well aso, a unit
vector.

After determining the directions ande, the whole vector
of the electric field in the lowegkzerg order of the expan-
sion (2) can be presented as

E©(r)=E 0e*0%+ E ee'ko, (30)

lowest[ (iko)?] order terms will vanish identically, because
0,S, ande,S, satisfy Eq.(3).

Using this set of vectorgo,es) as a basis, the general
expansion

©

E(r):eiko(so+se)/22 X[Omoe—ikoAS(r)
m=0

(iko)™

+Eee'0dS 1+ 7 g (33

can also be used to determine higher order corrections to the
first order approach for the amplitudes by substituting Eq.
(33) into the wave equatiofil). In Eq. (33)

1
AS(r)=51Se(r) = So(n)]. (34

It is clear also thaDy=E,, Eq=E., Z;=Eg, andZ,=0.
Combining terms with equal powers of {&§) in Eqg. (1),

one can derive equations f@,,(r), E,(r), andZ,(r) in
each order in the. expansion. In principle, these equations

In this expressionE, andE, are the complex electric field can pe solved numerically using the known results for the
amplitudes of the ordinary and extraordinary waves. To findgwer order amplitude calculations.

these amplitudes, highéthan the lowestorder terms in the

In this study only the lowest order approximation for the

A expansion, as given by E@2), must be considered. In complex amplitudes was used. Substituting expreséian

general, fields of higher than the lowest order will not be ajn Eq. (1), one finds the following resulting equations for
simple linear combination o ande, as in Eq.(30). This is Eo(r), E«(r), andEq(r):

already clear from the following consideration. After substi-
tuting Eq.(30) into Eqg. (1) and taking into account that Eq.
(1) is a vector equation, we have three differential equations
to determine only two amplitudes, and E, (which is im-  In these equations.=exp(+ik,AS), i=1,2,3,

possible in the general casdo remove this discrepancy, it

is enough to add a third term to the linear combination in Eq G (Eo0k) = 29, Sedk(Eo0i) — 9; Sodx( ExOK) — 3k Sodi(Eo0k),

e_G{(Eq0y) + e, G (Eey) =EGA, . (35

(30). This term must be proportional to some vecsprand (36)
this vector must be linearly independentaménde, but oth-
erwise arbitrary. For mathematical convenierisee latey, G (Ece) =20, Sedk(Ec€) + 9yl 0, Se(Ee€) ]
the vectors in this study was chosen as
— [ 9 Se(Ee€i) ] — 9k Sedi(Ec€))
V(S,+Se)
= — —0;Sedi(Ecy), 3

S |V(So+8e)|' (31) i“e k( e k) ( 7)
and the whole vector of the electric field in the first order A= €S, IF= i (39)
approximation can be presented as Xk

_ . Ess |
E(l)(r) — Eooelk050+ EeeelkOSe+ ﬁ eIkO(SO+ Se)/Zl (32)

From a physical point of view the last term in E§2) pro-

and, again, summing over repeated indices is assumed. Equa-
tions (35) do not contain space derivatives of the amplitude
Es. This is a consequence of the specific choice of vestor

in Eq. (31) and the identityV?E—V(V-E)=V X (V XE).

vides the coupling between ordinary and extraordinaryEliminating Eg from Egs.(35) gives a final set of two first
waves in this method of describing wave propagation in anerder differential equations for the unknown complex ampli-
isotropic media. As has already been mentioned in the Introtudesg, and E,, of the ordinary and extraordinary waves:
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Y ' . magnetic field violates all the symmetries of the cell except
[+ ] [+ ] periodicity in thex andy directions. Thus, the light transmit-

_l__A N 7 O N il tance calculation needs to consider the whole volume inside
P the right square RX 2L prism which is shown schematically

f in Fig. 1. It is assumed that a plane wave comes through air
5 from beneath the cell, and passes through the entrance polar-
' izer, the first glass substrate, the liquid crystal film, the sec-
Ob B ond glass substrate, and finally the analyzer. In all the results
of light transmittance calculations presented here, the polar-
izer and analyzer were considered as idealing thickness

b of several micrometeysand transmittance losses in two air-
polarizer interfaces were taken into account.
) n To solve the eikonal equatiorig) and (16) and the am-
] =] ] X plitude equations(39) and (40), corresponding boundary
conditions forS,, S, E,, andE, must be specified. In the

FIG. 1. Top view of the HMD cell. The cell possessds geri- ~ case of a plane wave incident on a planar liquid crystal layer

odicity along both thex andy directions. The orientation of the from an isotropic glass medium, the kinematic boundary
crossed analyzer and polarizer is shown in the upper left corner. conditions, first of all, must be satisfied along the glass-liquid
crystal interface:

AJe_ G (Eq0y) + e, G5 (Ee)]

95 IS .
=AJe GY(E00+e,Go(Ee)] (39 x Moo Gy =Ny, 1508, (4D
and where ng=Kk,/ko=(ngy,Ngy,Ng,), Wherek, is the wave
vector in the glass. Thel2 periodicity along bothx andy
Az[e_Gsk(Eook)+e+G§k(Eeek)] directions gives the other pair of conditions that must be
satisfied by Eqs(7) and (16):
=Aj[e_GEq01) +e, G Ecei)]. (40)
Si(x+2L,y,2)=S(X,y,2) +2Lngy, (42

These equations can be solved numerically using appropriate

boundary conditiongsee the example in the next section S(x,y+2L,2)=Si(X,y,2) +2Lng,. (43
One important remark can be made in concluding this

section. We have described the GOA formalism in the cas&Jsing these boundary and quasiperiodicity conditions, the

when the optical propertie@directoy depend on all three eikonal equation(7) for the ordinary wave can be solved

space coordinates. In the case whierfand, henceg) de-  analytically. The result is

pends on only two coordinates, sayand z, the following

simplifications are possible. First, in Eq®)—(16) for the So(X,Y,2) =NgxX+ Ngyy +NoZ,

extraordinary eikonal, one can substitut€§—ngy

+ Se(x,2), whereng, =Kk, /ky andkg, is they component of

the wave vector in the isotropic medium adjacent to the lig- _ \/ﬁ

uid crystal film. Equation(16) will be the same, with the Moz= VMo ™ Ngx™ Ngy-

substitutiondS,/dy—ngy in the coefficientsB and C. Fi-

nally, becauseE,, E., 0, and e do not depend on thg

coordinate, one can drop tlyederivatives ofE,0 andE.e in

Egs.(35—(37) [and then in Eqs(39) and (40)].

where
(44)

In general, the eikonal equatigh6) must be solved numeri-
cally for the extraordinary wave. In this study the centered
finite difference method implicit in the direction was used,
and the resulting nonlinear system of algebraic equations
was solved using the nonlinear Gauss-Seidel method.

ll. APPLICATION OF THE GOA TO A LIQUID CRYSTAL Similar periodicity conditions must be satisfied for the
CELL WITH THREE-DIMENSIONAL DIRECTOR ordinary E, and extraordinarfe, amplitudes:
VARIATIONS
Ei(x+2L,y,z)=E(X,y,2), (45

In this section the GOA is applied to calculation of the
light transmittance of a cell exhibiting the homeotropic to Ei(x,y+2L,2)=Ej(x,y,2), (46)
multidomainlike transitionfHMD cell) [29]. As was shown
in [30], due to the symmetries of the cell, it is enough towherei =o,e. The other boundary conditions f&i, andE.
calculate the director in the volume inside the right triangularcome from the continuity property of the tangential compo-
prism with the triangle OCD as its horizontal cross sectionnents of the electric and magnetic fields along the glass-
as shown in Fig. 1, and then extend the results to the rest diguid crystal interface:
the cell using symmetry. However, in the general case of
oblique incidence of a plane wave, the transmitted electro- Egtt Eqi=E{, HgtHg=H{, (47)
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where the tangential components of the eledjg, Eg, and Thus, the electromagnetic field in the second glass sub-

magneticHy, ,Hy, fields correspond to incident and reflected Strate can be represented as a wave packet of plane waves
electromagnetic waves in the isotropic glass medium adjat®1) with known amplitudesE,, and wave vectors
cent to the interface, an#; ,H; describe the transmitted

electromagnetic field in the layer of liquid crystal adjacent to Kgpg=Kol (Naxt €LP),(Nay+€LQ),Npg]-
the interface. In accordance wiff29], strong homeotropic : - 2 2
anchoring on both glass substrates can be assumed. THls!S worth noticing that i, + €, p)”+ (Nay*€,.q)* cannot

means that the first liquid crystal layer adjacent to the glasst_axceed LYwhich is equivalent to the total internal reflection

liquid crystal interface is homeotropic and described by &2f all waves with sufficiently largex andy components of

diagonal dielectric tensog;, with i=*2 in Eq. (5). Thus, their W?ﬁ’ et vecgors f{ohm thte analy(zjer—alr mterf)}:ﬁé’ms b
application of the formula$47) gives the following bound- means that we do not have 1o consider waves with numbers

ary conditions for the amplitudes of the ordinaBy and p andq lying outside the circle

(53

extraordinaryE, waves: (P Ryfan) 2+ (q+ Ryfiay) 2= R2 (54
2ng,Eqy; 2n2ng Eqyp _ :

A - L L (48  of radius Ry=1/c,=2L/\ in the (p, g plane. For 2

Noz* Ngz NgNoz+ NoNg; =60um, the total number of Fourier harmonids,, is

about 85000. However, calculations show that a much

In these expressiongg, _an_d Egy are the cqrrespondmg smaller number is enough to produce stable results. If, for
components of the electric field at the glass side of the glas%'xample one considers only waves with<20 and|q|
liquid crystal interface. They are calculated in the incidence '

di , duced b . he lab <20, the addition of the other Fourier harmonics does not
coordinate systemx(,y',z) produced by rotating the labo- change the result for light transmittance significantly. In the
ratory system(x,y,2) (shown in Fig. 1 by the angleg,

d th ) h is th uthal e of ih case of a cell with a reduced size oL 220 um, N, is
aroun thez axis, whereg, is the azimuthal angle of the about 4200, and limitatiori54) is more important. In this
incident plane. Then,

study the contribution of alN,, waves to the light transmit-

. . tance was taken into account in the case of the reduced size
Nos= \N5—SIIF B, Ng,=\n;—sirf 6, 49

The resulting amplitude of the electric field in &f can

wheren, is the refraction index in the glass ar is the be represented as the following superposition of the results
incidence polar angle in air. Taking into account the period- P g superp

icity conditions(45) and (46) and boundary condition&tg), qu of transmittance of each wave through the analyzer:
Egs.(39) and(40) were solved numerically inside the liquid
crystal cell using the implicit finite difference method. Ea=, queigpqeikupxwy)’ (55)
After passing the liquid crystal cell, the calculated elec- p.q
tromagnetic fieldlE=E® will be a complicated function of
the x andy coordinates. It is convenient to extract the factorwhere g,q=dgkonyq. In this expression the phase factor
exp(ko S,) from this function and expand the rest in a double€Xp(d,y) arises after passing the second glass substrate. Be-
Fourier series usingl2 periodicity in bothx andy directions. ~ causen,q depends on th@ and g numbers of a particular
Thus, at the beginning of the second glass substrate, plane wave, the corresponding differential light transmit-
tanceT(x,y)~E(x,y)-E*(x,y) also depends ody. How-
_ . . T ever, becausge'9rq =1, the light transmittance,, produced
E=e'k°S°Ef(x,y)=e'k°S°§] Ep@ tP WY, k.= T by averagingT(x,y) over the square I2x 2L does not de-
' (50) pend on the glass thickness.
The results of application of the GOA to the HMD cell are
Solving the time-harmonic wave equationV?E  shown in Figs. 2—11 for the case of normal incidence, when
= —(kong)’E in the homogeneous and isotropic glass me-ight is traveling from beneath the cell. All the results pre-
dium with the initial conditiong50) and taking into account sented in these figures are produced for the orientation of the
only transmitted waves, the resulting expressionHan the  crossed polarizer and analyzer shown in Fig. 1. The results of

second glass substrate can be represented as a plane-wé&e optical path difference calculations shown in Fig. 2 and
expansion, the results of the differential light transmittance calculations

shown in Figs. 3-5, 7, and 10 were produced along the line
ab (see Fig. 1 The electrodes were considered as transpar-
ent, and we assumed thaj=ny=1.5 and\ =0.55um. We

(51) use the director patterns for this liquid crystal cell produced
in Refs.[30] and[31] using two methods: a simplified model

E= eikOSOEf(x,y) _ eikOSOE queikL(px+ qy)eikonpqz,
p.q

where and direct computer calculation. It will be shown that both
methods lead to essentially the same optics results. Figures
Npg= \/nS—(naXJr cLp)?—(Ngy+cLq)? (520  2-9 describe the HMD cell with geometrical sizes used in
the experiment[29]: 2L=60um, electrode width |
with ¢, =N\/2L, n,,=sin6,C0S¢,, andny,= Sin 6, Sin ¢,. =10um, andd=5 um. The liquid crystal material chosen
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0.2

0.15
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0.1

0.05
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FIG. 2. Optical path difference distributions at different values

of the z coordinate(in um) and atu=18 V.

in the experimental cell possesses the birefringekices=n,

—n,=0.088. The other figures are plotted for the same type

of cell but with three times smaller sizes in tlxeandy
directions: in Figs. 10 and 1112=20 um, 1=3.33um, and
d=5um.

Figure 2 illustrates the evolution of the optical path dif-

ferenceS,— S, for different values of thez coordinate ¢
=0 corresponds to the bottom and d=5 wm to the top of
the liquid crystal film). Minima atx=15 and 45um corre-

spond to the wall defect regions where the director distribu-
tion is close to homeotropic and the optical path difference at

the exit of the liquid crystal film is small. As was shown in

PHYSICAL REVIEW B7, 041702 (2003

0.18 =
0.16 |-
0.14 |
012
01 F
0.08 |-
0.06 |-
0.04 -
0.02

T(x,y=15pm)

x (pm)

0.25 T T T

GOA —
A JONES ----4
0.2

0.16

0.1

T(x,y=154m)

0.05

X (pm)

FIG. 4. Differential light transmittance far=10 V. The value

Ref.[30], the director distribution is also close to homeotro- ¢ A is 0.088 in the upper graph and 0.15 in the lower one.

pic in the electrode region®ear the pointx=0, 30, and 60
pm in Fig. 2, andS,— S, at the top substrate is also small.

=10 um was chosen. The reason is that for tfus smallejy

Throughout the rest of the cell the director distribution isvalue ofdg, the influence of the glass layer on the differen-
close to planaf30] and the optical path difference is large. tial light transmittance is relatively small, aidqx,y) reflects

Figure 3 displays the dependencel@k,y) ond,. As has
already been mentioned,,, does not depend od,, and

mostly properties of the director distribution.
Figures 4 and 5 illustrate the dependence of the spatial

changing the glass thickness leads only to a redistribution adlistribution of the differential light transmittancg&(x,y) on

the differential light transmittance throughout thxey) plane.
In all further figures an artificially small value ofl,

0.18
0.16
0.14
0.12
0.1
0.08
0.06
0.04
002  ;
0 ." N

T(x,y=15um)

x (pm)

FIG. 3. Distribution of the differential light transmittance for
different glass thicknessedy=10, 100, and 100@m; u=10V.

voltageu and birefringencé\n. Each figure provides also a
comparison between the GOA and the Jones calculus method
for different values ou andAn. As one finds, the differen-
tial light transmittance is small in the wall defect and elec-
trode regions in accordance with the results of the optical
path calculations shown in Fig. 2. As follows also from these
figures, the difference ifi(x,y) between the GOA and Jones
calculus increases whenandAn increase. This is expected,
because for largen we have sharper director variations in
the x andy directions, and the corresponding spatial deriva-
tives (which are ignored in the Jones moxleécome increas-
ingly important. It is also clear that for largéin the influ-
ence of these sharp changes of the director on optical
properties is more tangible. The calculation of the averaged
light transmittanceT ,, is in accordance with these observa-
tion as well. Figure 6 display$,, as given by the GOA and
Jones calculus models. It shows that the two methods pro-
duce very similar results for small values of the birefrin-
gence, but the difference increases with. It is worth men-
tioning that the structure of the wall defect region of the
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FIG. 5. Differential light transmittance fax=18 V. The value
of An is 0.088 in the upper graph and 0.15 in the lower one.
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01

0.05
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FIG. 7. Differential light transmittance for the model and direct
computer calculatiom=12 V andAn=0.088.

BD] only for values of thez coordinate close to the midpoint
between the substrates and deviate significantly from these
diagonal planes in the near-substrate regions. Because of this
feature, the effect of ray focusing in the HMD cell is less
pronounced than in the 2D cell.

Figure 7 displaysT(x,y) for the director patterns calcu-
lated in two ways: using the model proposed in REBO—
32] and direct computer calculation at=12V and An
=0.088. The main idea of the model is to numerically solve
the dynamic equatioty, d;i= — SF/ 5 for the director using
a corresponding exact expression for the free enErgyt an
approximate analytical expression for the electric figldn
contrast, the previously used methods of direct computer so-
lution (e.g., the relaxation methpdio not use an approxi-
mate form for the electric field but instead soVeD=0 to

HMD cell differs from the one in the 2D cell, which com- 9€t the electric field after each director update, based on the
bines the concept of in-plane switching with vertical align- dynamic equation. As was shown in Reff80] and[32], the
ment[24,32. In the 2D case the surfaces where the directoProposed model helps to understand better the director and
stays homeotropic when is nonzero are planes. However electric field behavior in liquid crystal cells and is much

the corresponding surfaces in the HMD cell, as was found

’ir{aster than direct computer calculation, giving essentially the

[30], are more complicated. They are close to diagonaPa@me results for the director distribution. Figure 7 shows a

planes of the celllike the planesAC andBD in Fig. 1 which
go perpendicular to théx,y) plane along the line&\C and

0.085
0.08
0.075
0.07

s 0.065
0.06
0.055
0.05
0.04!

T

5
0.04 006 008 0.1 0.12 0.14 0.16 0.18 02

An

good agreement iT(x,y) between the model and direct
computer calculation, which can serve as additional confir-
mation of the accuracy of the model. Figure 8 shows the
voltage-dependeni,, (TV curve for the voltage range that

is relevant for display applications. The agreement between
the model and direct computer calculation is good.

Figure 9 illustrates the voltage dependencd gffor dif-
ferent values ofAn using the GOA. Whem\n is relatively
small (An~0.06 or smallex, the correspondingV curve
increases monotonically, reaching its asymptotic value,
which corresponds to the director pattern, wato. For
larger birefringence, a maximum on th& curve appears at
someu=u*. When An increases furtherT,(u*) and u*
decrease. After passing the maximum>u*), the light
transmittance decreases with increasing voltage and finally
approaches its asymptotic vallg(u=)<T,/(u*). This
type of voltage dependence @f, can easily be explained
qualitatively. For a largé\n, even a relatively small average

FIG. 6. An dependence of the averaged light transmittance fordeviation of the directof from its homeotropic distribution
the GOA and the Jones calculuset 18 V.

fi==*2 (at some small voltageproduces the optical path
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0.03 |- 1 = 0.1 4
0.02 |- .
001 F i 0.05 -
0 1 1 [l 1 1 0 L
6 5 10 15 20 25 0 2 4 6 8 10 12 14 16 18 20
u(V) x(pum)
FIG. 8. Averaged light transmittance vs volta@®&/curve. The |G, 10. Differential light transmittance for the GOA and the
solid curve is calculated using the model and the dashed curve ignes calculus models for the HMD cell with reduced sizes;
obtained from direct computer calculation. =10V. An=0.088.

differenceS, —S, which corresponds to the final orientation tance of the director variationis of the order of the electric

of the polarization of the outcoming radiation along therelaxation lengthe. For high voltageé may be comparable
transmittance axis of the analyzer. In this case the light tran§,-vith \, and even the results of the GOA fotr) across this

:nlttt?nc?hls m?x:ir;\utrr.nA :a:]ge][ ?&V'?t'orr: dotfrfrolrp rrllt:trinz mi,[region may be only qualitatively correct. However, because
otates the polarization plane further, a elg ansMiihe volume of the wall defect region is relatively small, its

tance decreases. S . .
. . contribution toT,, is also small. In the second regidthe
lFlgiurer%]OC?r:asebntf(fx,ry) Q tl)IOtrh the n(iotﬁ ar|1d ?Qe Jorf1etsh rest of the ce)l | is of the order of the corresponding geo-
caiculus models but Tor smafler geometrical sizes o etrical sizes of the cell. For this cél-=14 (wherel is the

HMD cell: period 2. =20um and the electrode width 040 width may be chosen. Even in the case of the

=3.33um (d=5um is the samg Clearly, the difference reduced geometrical sizes of the cell considered hgrs, of

betwee_n t_h_e GOA and Jones calcglus models in this case Stder of several micrometers kjl <1, and the GOA is still
more significant than for the cell with larger sizewsmpare applicable. It is clear, however, that for the reduced celixthe

with Fig. 4. Finally, Fig. 11 compare3V curves produced. andy derivatives become more important. For this reason the
by the GOA and Jones calculus models also for the cell Wltn:iifference in results between the GOA and Jones calculus

e s e e o MeNods MCreases i Gecrasiy andl . because e
with Fig. 10. The difference between the GOA and Joneslatter model completely ignores these. derivatives, and the
caIcqus-reSlets fol,, in the case of the experimental cell is anes cal_culgs method becomes quesuonable.. In suph a situ-

av - ation, taking into account also that the calculational times in
very small for the v_oltage range= 25V. (It IS not shown both the GOA and Jones calculus methods are comparable
here because the difference is so smallqualitative expla-

. . h ller than in th f the FDTD
nation of these last results is as follows. There are two re(and much smafier than in the case of the method

) ; > ; the GOA is preferable.
gions of lateral director variations. The first one corresponds P

to the wall defect area. In this region the characteristic dis-

0‘09 L ! ) L ] ) L) i
0.09 008t =T J
0.08 | 007 | GOA
0.07 - 0.06 - ’ JONES ------- i
0.06 I- 0.05 | i
H
& 005 & 004} ]
0.04 - 0.03 | i
003 | 002 | i
002 § 001 | .
0.01 ,, / E 0 1 ) 1 TR \ I 1
AN 0 2 4 6 8 10 12 14 16 18 20

0
0 10 20 30 40 50 60 70 80
u (V)

u (V)

FIG. 11. Averaged light transmittance vs volta@&/ curve for
FIG. 9. TV curves for different values of the birefringenda. the HMD cell with reduced sizes ankin=0.088.
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IV. CONCLUSIONS uid crystal cell whose director variations occur on the mi-

The geometrical optics approach has been applied to thtcrometer scale and comparable results for cells with varia-

calculation of the differential and averaged light transmit- fons on larger length scales. The GOA is especially useful

S : X for a 3D cell when the finite difference time domain method
tance for the case of a liquid crystal film whose director.

varies in three spatial dimensions. A liquid crystal cell that'> extremely time consuming.
exhibits the homeotropic to multidomainlike transition was
considered as an example of the GOA application. The GOA
provides a fast method of calculating the light transmittance
(almost as fast as the Jones calculus methgiging a more This work was supported in part by National Science
accurate description than the Jones calculus results for a lidcoundation Grant No. DMS-0107761.
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