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Geometrical optics approach in liquid crystal films with three-dimensional director variations
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A formal geometrical optics approach~GOA! to the optics of nematic liquid crystals whose optic axis
~director! varies in more than one dimension is described. The GOA is applied to the propagation of light
through liquid crystal films whose director varies in three spatial dimensions. As an example, the GOA is
applied to the calculation of light transmittance for the case of a liquid crystal cell which exhibits the homeo-
tropic to multidomainlike transition~HMD cell!. Properties of the GOA solution are explored, and comparison
with the Jones calculus solution is also made. For variations on a smaller scale, where the Jones calculus breaks
down, the GOA provides a fast, accurate method for calculating light transmittance. The results of light
transmittance calculations for the HMD cell based on the director patterns provided by two methods, direct
computer calculation and a previously developed simplified model, are in good agreement.
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I. INTRODUCTION

Optics is one of the primary empirical tools for inves
gating the physical behavior of liquid crystals. Optical me
surements can be used to infer director orientation, iden
phases, and study the dynamics of director fluctuations
addition, the optical behavior of liquid crystals is of techn
logical importance because of the use of liquid crystals
display applications. As the physics and technology of liq
crystals advance, there is a need for better understandin
the optics at smaller and smaller feature sizes. The stud
defect structures and confinement of liquid crystals
micrometer-sized cavities are two examples of areas of
tive research. At the same time, microdisplays and swit
able diffractive elements for optical communications ha
pushed applied research on liquid crystals into the micro
ter regime.

There have been several approaches to handling mu
mensional optics calculations for liquid crystals. The si
plest involves extending one-dimensional techniques suc
the 434 matrix methods@1# or the Jones calculus@2#. In
these approaches, the liquid crystal is treated locally as h
ing index variations only along the direction of light prop
gation: lateral variations in optical properties are ignored@3#.
The multidimensional behavior is then obtained as a co
posite of several one-dimensional calculations. This sim
description should be applicable when the wavelength
light l is very small relative to the liquid crystal feature siz
of interest.

At the other extreme, when the feature sizes are sma
thanl, a direct solution of Maxwell’s equations is require
Because of the complexity of any physically interesti
problem, no analytical solutions are possible, and comp
calculations are necessary. In this regard, the so-called fi
difference time domain~FDTD! method has been the mo
widely used@4–8#. Later, Kriezis and Elston introduced
wide-angle beam propagation method~BPM! for two-
dimensional liquid crystal optics problems@9–11#. In @9,10#,
their development had the following restrictions: the direc
1063-651X/2003/67~4!/041702~10!/$20.00 67 0417
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must lie in a plane, and that plane must be the plane
incidence; reflections must be minimal. Within these boun
however, they demonstrated that the results of the BPM
in excellent agreement with FDTD calculations even wh
the geometry is comparable in size tol. Furthermore, the
technique is very amenable to numerical calculation, be
stable and fast compared to the FDTD approach. Later
@11#, Kriezis and Elston generalized the proposed method
handle a liquid crystal~LC! cell with a tilted-twisted director
profile, considering a light-wave propagation in a twist
nematic microdisplay pixel. Again, it has been shown that
its regime of validity the BPM can reproduce FDTD simul
tions with good accuracy.

In this paper another description of the multidimension
optics of liquid crystal media is considered, the geometri
optics approach~GOA!, which bridges the gap between the
two regimes. As is known, the GOA is applicable if the p
rameterk51/k0l is small. Herel is the characteristic scale o
the medium inhomogeneity,k052p/l, andl is the vacuum
wavelength. In an anisotropic medium, which can be char
terized in our case by the dielectric tensorê ~we consider a
liquid crystal material without absorption or spatial dispe
sion, whose magnetic permeability is equal to 1!. The
strength of the anisotropy can be described by the param
n5maxueik2e0diku, wheree05 1

3 Tr ê. There is a substantia
literature on the GOA for isotropic media, wheren50 ~see,
for example,@12# and references there!, on the one hand
and, on the other hand, for anisotropic media with relativ
high birefringence, whenn@k @12–14#. In the latter case the
normal waves~ordinary and extraordinary waves in ou
problems! can be treated independently~the Courant-Lax
method!, and interaction between them is negligible. A re
sonable and useful approach for studying wave propaga
through a medium with ‘‘weak’’ anisotropy, whenn is of the
order of k ~or n,k), was proposed and developed
@15,16#. It was shown that in a region of weak birefringen
a strong interaction between the normal modes occurs, w
leads to a redistribution of energy between the normal wav
The basic assumption of this ‘‘quasi-isotropic approach,’’ d
scribed in detail in@16#, is to use the isotropic form of geo
metrical optics equations as the zeroth approximation,
©2003 The American Physical Society02-1
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then to consider the anisotropy tensorn ik5e ik2e0d ik as a
perturbation of the same order of magnitude ask. The ray
path technique has also been employed in these studie
accordance with this technique, one determines first the
trajectories together with the local wave vectorsk~r ! along
them, and, in the next stage, one determines the amplitu
of normal waves along the rays, using moving coordin
systems attached to each ray. The method developed
applied successfully to different problems, such as elec
magnetic wave propagation in plasma~solar, ionospheric,
laboratory! and optical and elastic phenomena in crystals a
deformed isotropic media.

Ong and Meyer@17,18# and Ong@19,20# were the first to
apply geometrical optics extensively to liquid crystals. Th
developed the theoretical framework for geometrical op
of liquid crystals in one dimension and applied the GOA
several basic and technological problems. Since then,
GOA has been applied to liquid crystal problems where
director varies in two dimensions, with the same restrict
as mentioned above for the BPM: the director lies in a pla
which is also the plane of incidence. These restrictions
move any coupling between the ordinary and extraordin
rays, permitting a ray tracing approach to geometrical opt
Kosmopoulos and Senginoglou@21,22# used the geometrica
optics ray technique to study ray trajectories and inten
variations for light propagating through a periodically d
torted homogeneous nematic layer. Later, Reyes@23# applied
geometric optics to the multidimensional problem of a ne
atic liquid crystal confined in a spherical cavity. He studi
the ray trajectories in the equatorial plane of a droplet w
radial director configuration but did not explore the var
tions in field amplitude. Recently, Liu, Kelly, and Chen su
cessfully applied the GOA to study the electro-optical p
formance of a self-compensating vertically aligned liqu
crystal display cell@24#, using a two-dimensional~2D! liquid
crystal display mode which combines the concepts of
in-plane switching mode with vertical alignment@25,26#. In
@27# the GOA coupled with Kirchhoff diffraction theory wa
applied to study optical properties of a switchable diffracti
grating, where the same cell@25,26# was used. For this 2D
cell it has also been shown that, for the conditions when
BPM is applicable, the GOA is in reasonable agreement w
BPM ~and FDTD! calculations even ifl is comparable with
l. This contrasts with the Jones calculus, which differs s
nificantly from the GOA, BPM, and FDTD results forl com-
parable withl.

In our study we consider the GOA equations as par
differential equations which follow directly from the Max
well equations whenk!1. In our opinion, this way of find-
ing the GOA solutions is more convenient than the ray p
technique, because it employs a laboratory frame~conve-
nient for the LC cell under consideration! without resorting
to the curvilinear coordinate systems associated with ra
and a uniform mesh can be used. We do not consider
anisotropy ofê as being small, and in the present studyk is
the only small parameter. This is important because, eve
n!1, the relationn;k usually holds only in wall defect o
near-substrate regions at a relatively high voltage. Outs
these regions, however,n@k, and the error related to ne
04170
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glecting contributions of the order ofn2 could be larger than
second order~and higher! geometrical optics corrections. I
order to describe regions wheren;k, mode coupling be-
tween ordinary and extraordinary waves is introduced,
though in a way different from the methods used in@16#. In
Sec. II the mathematical formalism of the GOA in the case
a liquid crystal cell with a multidimensional director distr
bution is considered, and in Sec. III an application of t
GOA to a cell with a three-dimensional director is describe

II. MATHEMATICAL ASPECTS OF THE GOA

The time-harmonic wave equation for the electric field
derived from Maxwell’s equations and has the followin
form in a nonconductive dielectric medium:

¹2E2“~“•E!5~ ik0!2êE. ~1!

The GOA uses an expansion for the electric fieldE in powers
of l,

E~r !5eik0S~r ! (
m50

` Em~r !

~ ik0!m , ~2!

and a similar expression for the magnetic field with the f
lowing substitution:E(r )→H(r ) and Em(r )→Hm(r ). This
expansion is well justified whenl is small relative to spatia
variations ofEm andHm .

In Eq. ~2! @and the corresponding expression forHm(r )],
the functionS(r ) is the optical path length or, as it is som
times called, the eikonal. The surfaces of constantS are or-
thogonal to the local wave vector direction@n(r )[“S# and
are the wave fronts of geometrical optics.

After substituting Eq.~2! into Eq. ~1!, the lowest order
terms@of order (ik0)2] give the following equation:

@~“S! i~“S!k2~“S!2d ik1e ik#E0k50 ~3!

~here and subsequently summing on repeated indices is
sumed!, which is equivalent to three homogeneous line
equations for the three components ofE0 . The compatability
conditions of Eq.~3! demand that

detu~“S! i~“S!k2~“S!2d ik1e iku50. ~4!

If one denotesni5(“S) i , Eq. ~4! formally coincides with
the well known Fresnel equation for the vectorn5k/k0 ,
wherek is the wave vector in the medium~see, for example,
@28#!. In our case, we have the following expression for t
dielectric tensore ik through the directorn̂:

e ik5no
2d ik1Den̂i n̂k , ~5!

where De5ne
22no

2. Here no and ne are the ordinary and
extraordinary indices of refraction. Calculating the determ
nant in Eq. ~4! in a local coordinate system where th
uniaxial dielectric tensor is diagonal, one can rewrite Eq.~4!
as

@~“S!22no
2#@~“S!22neff

2 #50. ~6!
2-2
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Equation~6! is an eigenvalue equation with two nondege
erate eigenvectors. One solution, which we denote aso, cor-
responds to the ordinary wave, whose eigenvalue satisfie
characteristic equation

~“So!25no
2, ~7!

whereSo is the optical path length associated with this eige
mode. The second eigenvector, designatede, is the extraor-
dinary wave with characteristic equation

~“Se!
25neff

2 . ~8!

The effective index of refraction in Eqs.~6! and ~8! is de-
fined by the following expression:

neff5neff~a!5
none

Ano
2 sin2~a!1ne

2 cos2~a!
, ~9!

wherea is the angle between“Se and the~local! optic axis.
Unlike the case of homogeneous anisotropic media con
ered in@28#, here the directorn̂ ~and hence the optical axis!
is a function of the space coordinatesr . This means that in
our inhomogeneous case the right-hand side of Eq.~9! is also
a function of“Se andn̂, which makes Eq.~8! a complicated
partial differential equation. For further consideration of E
~8!, it is convenient to eliminatea from this equation using
Eq. ~9! and the relation

cos2~a!5
~ n̂•“Se!

2

~“Se!
2 . ~10!

Substituting Eq.~10! into Eq.~9!, one can rewrite Eq.~8! for
the extraordinary eikonal in the following form:

~“Se!
21Dê~ n̂•“Se!

25ne
2 ~11!

with Dê[De/no
2. Because all the expressions in Eqs.~9! and

~10! are scalars, one can consider Eq.~11! in a laboratory
coordinate system.

Equation~11! can be rewritten as

AS ]Se

]z D 2

12B
]Se

]z
2C50, ~12!

where the coefficientsA, B, andC can be expressed throug
the director components andx andy derivatives ofSe in the
following way:

A511Dên̂z
2, ~13!

B5DêF n̂x

]Se

]x
1n̂y

]Se

]y G , ~14!

C5ne
22S ]Se

]x D 2

2S ]Se

]y D 2

2DêF n̂x

]Se

]x
1n̂y

]Se

]y G2

.

~15!

Assume that light propagates in some direction in the h
space of increasingz coordinate. Equation~12! gives
04170
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]Se

]z
5

2B6AB21AC

A
, ~16!

where the plus sign describes the forward propagating w
and the negative sign stands for the reflected wave. In w
follows, reflections are ignored. Equations~7! and~16! must
be solved with appropriate boundary conditions which d
pend on the properties of the liquid crystal cell and the pr
erties of the isotropic medium adjacent to the cell. A partic
lar example of a 3D liquid crystal cell is considered in Se
III.

If So andSe are known, Eq.~3! allows one to obtain also
the directions of the electric vectors of the ordinaryo and
extraordinarye waves. SubstitutingS5So into Eq. ~3! gives
the following system of equations to determineE05o
[(ox ,oy ,oz):

cik
~o!ok50, ~17!

where

cik
~o!5~“So! i~“So!k1Den̂i n̂k . ~18!

Because the determinant of this system is zero, two com
nents of the vectoro can be expressed through the third on
and one finds

o5g~Nyzx̂1Nzxŷ1Nxyẑ!. ~19!

Herex̂, ŷ, andẑ are the unit vectors of the laboratory fram
and

~Nyzx̂1Nzxŷ1Nxyẑ![N5n̂3“So . ~20!

The coefficient of proportionalityg in Eq. ~19! is not unique.
A possible choice forg is g5(Nyz

2 1Nzx
2 1Nxy

2 )21/2, which
makes the vectoro a unit vector. In the same way, substitu
ing S5Se into Eq.~3! produces a similar system of equatio
to determine the extraordinary electric vectorE05e
[(ex ,ey ,ez):

@cik
~e!2dned ik#ek50, ~21!

where

cik
~e!5~“Se! i~“Se!k1Den̂i n̂k

and

dne5@~“Se!
22no

2#. ~22!

Using Eq.~11! for the extraordinary eikonal, one can expre
(n̂•“Se)

2 throughdne :

~ n̂•“Se!
25no

2S 12
1

De D dne . ~23!

On the other hand, a straightforward calculation shows t
(n̂3“Se)

25(“Se)
22(n̂•“Se)

2, which allows one eventu-
ally to find dne as
2-3
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dne5
De

ne
2 ~Ne!

2 ~24!

with

Ne[n̂3“Se5Nyz
e x̂1Nzx

e ŷ1Nxy
e ẑ. ~25!

As in the ordinary case, the determinant of the system~21! is
zero, and one can express again two components of the
tor e through the third one. Using also the relation~24!, one
finds that

e5g8~bxx̂1byŷ1bzẑ!, ~26!

where

bx5~Ne!
2~ne

22cxx
~e!!2ne

2~Nyz
e !2, ~27!

by52~Ne!
2cxy

~e!2ne
2Nyz

e Nzx
e , ~28!

bz52~Ne!
2cxz

~e!2ne
2Nyz

e Nxy
e , ~29!

and the proportionality coefficient in Eq.~26! may be chosen
as (bx

21by
21bz

2)21/2, which makese, as well aso, a unit
vector.

After determining the directionso ande, the whole vector
of the electric field in the lowest~zero! order of thel expan-
sion ~2! can be presented as

E~0!~r !5Eooeik0So1Eeeeik0Se. ~30!

In this expression,Eo andEe are the complex electric field
amplitudes of the ordinary and extraordinary waves. To fi
these amplitudes, higher~than the lowest! order terms in the
l expansion, as given by Eq.~2!, must be considered. In
general, fields of higher than the lowest order will not be
simple linear combination ofo ande, as in Eq.~30!. This is
already clear from the following consideration. After subs
tuting Eq.~30! into Eq. ~1! and taking into account that Eq
~1! is a vector equation, we have three differential equati
to determine only two amplitudesEo and Ee ~which is im-
possible in the general case!. To remove this discrepancy,
is enough to add a third term to the linear combination in E
~30!. This term must be proportional to some vectors, and
this vector must be linearly independent ofo ande, but oth-
erwise arbitrary. For mathematical convenience~see later!,
the vectors in this study was chosen as

s5
“~So1Se!

u“~So1Se!u
, ~31!

and the whole vector of the electric field in the first ord
approximation can be presented as

E~1!~r !5Eooeik0So1Eeeeik0Se1
Ess

ik0
eik0~So1Se!/2. ~32!

From a physical point of view the last term in Eq.~32! pro-
vides the coupling between ordinary and extraordin
waves in this method of describing wave propagation in
isotropic media. As has already been mentioned in the In
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duction, this term is important in regions~like a wall defect
or near-substrate regions! where the characteristic anisotrop
strengthn can be of order 1/k0l ~in these regions the charac
teristic scale of the medium inhomogeneityl is of the order
of the correlation lengthj and is relatively small at high
voltages!. Substituting this expression into the time
harmonic wave equation and combining terms with the fi
power of ik0 , one can derive equations for the amplitud
Eo , Ee , and Es . It is worth mentioning, again, that th
lowest @( ik0)2# order terms will vanish identically, becaus
o,So ande,Se satisfy Eq.~3!.

Using this set of vectors~o,e,s! as a basis, the generall
expansion

E~r !5eik0~So1Se!/2(
m50

`
1

~ ik0!m 3@Omoe2 ik0DS~r !

1Emeeik0DS~r !1Zms# ~33!

can also be used to determine higher order corrections to
first order approach for the amplitudes by substituting E
~33! into the wave equation~1!. In Eq. ~33!

DS~r !5
1

2
@Se~r !2So~r !#. ~34!

It is clear also thatO0[Eo , E0[Ee , Z1[Es , andZ050.
Combining terms with equal powers of (1/ik0) in Eq. ~1!,
one can derive equations forOm(r ), Em(r ), and Zm(r ) in
each order in thel expansion. In principle, these equatio
can be solved numerically using the known results for
lower order amplitude calculations.

In this study only the lowest order approximation for th
complex amplitudes was used. Substituting expression~32!
in Eq. ~1!, one finds the following resulting equations fo
Eo(r ), Ee(r ), andEs(r ):

e2Gik
o ~Eook!1e1Gik

e ~Eeek!5EsAi . ~35!

In these equationse6[exp(6ik0 DS), i 51,2,3,

Gik
o ~Eook!52]kSo]k~Eooi !2] iSo]k~Eook!2]kSo] i~Eook!,

~36!

Gik
e ~Eeek!52]kSe]k~Eeei !1]k@]kSe~Eeei !#

2] i@]kSe~Eeek!#2]kSe]k~Eeei !

2] iSe]k~Eeek!, ~37!

Ai5e iksk , ]kF[
]F

]xk
, ~38!

and, again, summing over repeated indices is assumed. E
tions ~35! do not contain space derivatives of the amplitu
Es . This is a consequence of the specific choice of vectos
in Eq. ~31! and the identity¹2E2“(“•E)5“3(“3E).
Eliminating Es from Eqs.~35! gives a final set of two first
order differential equations for the unknown complex amp
tudesEo andEe of the ordinary and extraordinary waves:
2-4
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Az@e2Gxk
o ~Eook!1e1Gxk

e ~Eeek!#

5Ax@e2Gzk
o ~Eook!1e1Gzk

e ~Eeek!# ~39!

and

Az@e2Gyk
o ~Eook!1e1Gyk

e ~Eeek!#

5Ay@e2Gzk
o ~Eook!1e1Gzk

e ~Eeek!#. ~40!

These equations can be solved numerically using approp
boundary conditions~see the example in the next section!.

One important remark can be made in concluding t
section. We have described the GOA formalism in the c
when the optical properties~director! depend on all three
space coordinates. In the case whenn̂ ~and, hence,ê) de-
pends on only two coordinates, say,x and z, the following
simplifications are possible. First, in Eqs.~8!–~16! for the
extraordinary eikonal, one can substituteSe→ngyy
1Se(x,z), wherengy5kgy /k0 andkgy is they component of
the wave vector in the isotropic medium adjacent to the
uid crystal film. Equation~16! will be the same, with the
substitution]Se /]y→ngy in the coefficientsB and C. Fi-
nally, becauseEo , Ee , o, and e do not depend on they
coordinate, one can drop they derivatives ofEoo andEee in
Eqs.~35!–~37! @and then in Eqs.~39! and ~40!#.

III. APPLICATION OF THE GOA TO A LIQUID CRYSTAL
CELL WITH THREE-DIMENSIONAL DIRECTOR

VARIATIONS

In this section the GOA is applied to calculation of th
light transmittance of a cell exhibiting the homeotropic
multidomainlike transition~HMD cell! @29#. As was shown
in @30#, due to the symmetries of the cell, it is enough
calculate the director in the volume inside the right triangu
prism with the triangle OCD as its horizontal cross secti
as shown in Fig. 1, and then extend the results to the res
the cell using symmetry. However, in the general case
oblique incidence of a plane wave, the transmitted elec

FIG. 1. Top view of the HMD cell. The cell possesses 2L peri-
odicity along both thex and y directions. The orientation of the
crossed analyzer and polarizer is shown in the upper left corne
04170
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magnetic field violates all the symmetries of the cell exc
periodicity in thex andy directions. Thus, the light transmit
tance calculation needs to consider the whole volume ins
the right square 2L32L prism which is shown schematicall
in Fig. 1. It is assumed that a plane wave comes through
from beneath the cell, and passes through the entrance p
izer, the first glass substrate, the liquid crystal film, the s
ond glass substrate, and finally the analyzer. In all the res
of light transmittance calculations presented here, the po
izer and analyzer were considered as ideal~having thickness
of several micrometers!, and transmittance losses in two a
polarizer interfaces were taken into account.

To solve the eikonal equations~7! and ~16! and the am-
plitude equations~39! and ~40!, corresponding boundary
conditions forSo , Se , Eo , andEe must be specified. In the
case of a plane wave incident on a planar liquid crystal la
from an isotropic glass medium, the kinematic bounda
conditions, first of all, must be satisfied along the glass-liq
crystal interface:

]Si

]x
5ngx ,

]Si

]y
5ngy , i 5o,e, ~41!

where ng5kg /k05(ngx ,ngy ,ngz), where kg is the wave
vector in the glass. The 2L periodicity along bothx and y
directions gives the other pair of conditions that must
satisfied by Eqs.~7! and ~16!:

Si~x12L,y,z!5Si~x,y,z!12Lngx , ~42!

Si~x,y12L,z!5Si~x,y,z!12Lngy . ~43!

Using these boundary and quasiperiodicity conditions,
eikonal equation~7! for the ordinary wave can be solve
analytically. The result is

So~x,y,z!5ngxx1ngyy1nozz,

where

noz5Ano
22ngx

2 2ngy
2 . ~44!

In general, the eikonal equation~16! must be solved numeri
cally for the extraordinary wave. In this study the center
finite difference method implicit in thez direction was used,
and the resulting nonlinear system of algebraic equati
was solved using the nonlinear Gauss-Seidel method.

Similar periodicity conditions must be satisfied for th
ordinaryEo and extraordinaryEe amplitudes:

Ei~x12L,y,z!5Ei~x,y,z!, ~45!

Ei~x,y12L,z!5Ei~x,y,z!, ~46!

wherei 5o,e. The other boundary conditions forEo andEe
come from the continuity property of the tangential comp
nents of the electric and magnetic fields along the gla
liquid crystal interface:

Egt1Egt9 5Et8 , Hgt1Hgt9 5Ht8 , ~47!
2-5
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where the tangential components of the electricEgt ,Egt9 and
magneticHgt ,Hgt9 fields correspond to incident and reflect
electromagnetic waves in the isotropic glass medium a
cent to the interface, andEt8 ,Ht8 describe the transmitte
electromagnetic field in the layer of liquid crystal adjacent
the interface. In accordance with@29#, strong homeotropic
anchoring on both glass substrates can be assumed.
means that the first liquid crystal layer adjacent to the gla
liquid crystal interface is homeotropic and described by
diagonal dielectric tensore ik with n̂56 ẑ in Eq. ~5!. Thus,
application of the formulas~47! gives the following bound-
ary conditions for the amplitudes of the ordinaryEo and
extraordinaryEe waves:

Eo5
2ngzEgy8
n0z1ngz

, Ee5
2ng

2ngzEgx8

ng
2n0z1no

2ngz
. ~48!

In these expressionsEgx8 and Egy8 are the corresponding
components of the electric field at the glass side of the gl
liquid crystal interface. They are calculated in the inciden
coordinate system (x8,y8,z) produced by rotating the labo
ratory system~x,y,z! ~shown in Fig. 1! by the anglefa
around thez axis, wherefa is the azimuthal angle of the
incident plane. Then,

noz5Ano
22sin2 ua, ngz5Ang

22sin2 ua ~49!

whereng is the refraction index in the glass andua is the
incidence polar angle in air. Taking into account the perio
icity conditions~45! and~46! and boundary conditions~48!,
Eqs.~39! and~40! were solved numerically inside the liqui
crystal cell using the implicit finite difference method.

After passing the liquid crystal cell, the calculated ele
tromagnetic fieldE[E(1) will be a complicated function of
the x andy coordinates. It is convenient to extract the fac
exp(ik0 So) from this function and expand the rest in a doub
Fourier series using 2L periodicity in bothx andy directions.
Thus, at the beginning of the second glass substrate,

E5eik0SoEf~x,y!5eik0So(
p,q

Epqe
ikL~px1qy!, kL[

p

L
.

~50!

Solving the time-harmonic wave equation¹2E
52(k0ng)2E in the homogeneous and isotropic glass m
dium with the initial conditions~50! and taking into accoun
only transmitted waves, the resulting expression forE in the
second glass substrate can be represented as a plane
expansion,

E5eik0SoEf~x,y!5eik0So(
p,q

Epqe
ikL~px1qy!eik0npqz,

~51!

where

npq5Ang
22~nax1cLp!22~nay1cLq!2 ~52!

with cL5l/2L, nax5sinua cosfa , andnax5sinua sinfa .
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Thus, the electromagnetic field in the second glass s
strate can be represented as a wave packet of plane w
~51! with known amplitudesEpq and wave vectors

kgpq5k0@~nax1cLp!,~nay1cLq!,npq#. ~53!

It is worth noticing that (nax1cLp)21(nay1cLq)2 cannot
exceed 1~which is equivalent to the total internal reflectio
of all waves with sufficiently largex and y components of
their wave vectors from the analyzer-air interface!. This
means that we do not have to consider waves with numb
p andq lying outside the circle

~p1Rgnax!
21~q1Rgnay!

25Rg
2 ~54!

of radius Rg51/cL52L/l in the ~p, q! plane. For 2L
560mm, the total number of Fourier harmonicsNpq is
about 85 000. However, calculations show that a mu
smaller number is enough to produce stable results. If,
example, one considers only waves withupu<20 and uqu
<20, the addition of the other Fourier harmonics does
change the result for light transmittance significantly. In t
case of a cell with a reduced size of 2L520mm, Npq is
about 4200, and limitation~54! is more important. In this
study the contribution of allNpq waves to the light transmit-
tance was taken into account in the case of the reduced
cell.

The resulting amplitude of the electric field in airEa can
be represented as the following superposition of the res
Epq

a of transmittance of each wave through the analyzer:

Ea5(
p,q

Epq
a eigpqeikL~px1qy!, ~55!

where gpq5dgk0npq . In this expression the phase fact
exp(igpq) arises after passing the second glass substrate.
causenpq depends on thep and q numbers of a particular
plane wave, the corresponding differential light transm
tanceT(x,y);E(x,y)•E* (x,y) also depends ondg . How-
ever, becauseueigpqu51, the light transmittanceTav produced
by averagingT(x,y) over the square 2L32L does not de-
pend on the glass thickness.

The results of application of the GOA to the HMD cell a
shown in Figs. 2–11 for the case of normal incidence, wh
light is traveling from beneath the cell. All the results pr
sented in these figures are produced for the orientation of
crossed polarizer and analyzer shown in Fig. 1. The result
the optical path difference calculations shown in Fig. 2 a
the results of the differential light transmittance calculatio
shown in Figs. 3–5, 7, and 10 were produced along the
ab ~see Fig. 1!. The electrodes were considered as transp
ent, and we assumed thatno5ng51.5 andl50.55mm. We
use the director patterns for this liquid crystal cell produc
in Refs.@30# and@31# using two methods: a simplified mode
and direct computer calculation. It will be shown that bo
methods lead to essentially the same optics results. Fig
2–9 describe the HMD cell with geometrical sizes used
the experiment @29#: 2L560mm, electrode width l
510mm, andd55 mm. The liquid crystal material chose
2-6
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in the experimental cell possesses the birefringenceDn[ne
2no50.088. The other figures are plotted for the same t
of cell but with three times smaller sizes in thex and y
directions: in Figs. 10 and 11 2L520mm, l 53.33mm, and
d55 mm.

Figure 2 illustrates the evolution of the optical path d
ferenceSe2So for different values of thez coordinate (z
50 corresponds to the bottom andz5d55 mm to the top of
the liquid crystal film!. Minima at x515 and 45mm corre-
spond to the wall defect regions where the director distri
tion is close to homeotropic and the optical path difference
the exit of the liquid crystal film is small. As was shown
Ref. @30#, the director distribution is also close to homeotr
pic in the electrode regions~near the pointsx50, 30, and 60
mm in Fig. 2!, andSe2So at the top substrate is also sma
Throughout the rest of the cell the director distribution
close to planar@30# and the optical path difference is large

Figure 3 displays the dependence ofT(x,y) on dg . As has
already been mentioned,Tav does not depend ondg , and
changing the glass thickness leads only to a redistributio
the differential light transmittance throughout the~x,y! plane.
In all further figures an artificially small value ofdg

FIG. 2. Optical path difference distributions at different valu
of the z coordinate~in mm! and atu518 V.

FIG. 3. Distribution of the differential light transmittance fo
different glass thicknesses:dg510, 100, and 1000mm; u510 V.
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510mm was chosen. The reason is that for this~or smaller!
value ofdg , the influence of the glass layer on the differe
tial light transmittance is relatively small, andT(x,y) reflects
mostly properties of the director distribution.

Figures 4 and 5 illustrate the dependence of the spa
distribution of the differential light transmittanceT(x,y) on
voltageu and birefringenceDn. Each figure provides also
comparison between the GOA and the Jones calculus me
for different values ofu andDn. As one finds, the differen-
tial light transmittance is small in the wall defect and ele
trode regions in accordance with the results of the opt
path calculations shown in Fig. 2. As follows also from the
figures, the difference inT(x,y) between the GOA and Jone
calculus increases whenu andDn increase. This is expected
because for largeru we have sharper director variations
the x andy directions, and the corresponding spatial deriv
tives~which are ignored in the Jones model! become increas-
ingly important. It is also clear that for largerDn the influ-
ence of these sharp changes of the director on opt
properties is more tangible. The calculation of the avera
light transmittanceTav is in accordance with these observ
tion as well. Figure 6 displaysTav as given by the GOA and
Jones calculus models. It shows that the two methods
duce very similar results for small values of the birefri
gence, but the difference increases withDn. It is worth men-
tioning that the structure of the wall defect region of t

FIG. 4. Differential light transmittance foru510 V. The value
of Dn is 0.088 in the upper graph and 0.15 in the lower one.
2-7
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HMD cell differs from the one in the 2D cell, which com
bines the concept of in-plane switching with vertical alig
ment@24,32#. In the 2D case the surfaces where the direc
stays homeotropic whenu is nonzero are planes. Howeve
the corresponding surfaces in the HMD cell, as was found
@30#, are more complicated. They are close to diago
planes of the cell@like the planesAC andBD in Fig. 1 which
go perpendicular to the~x,y! plane along the linesAC and

FIG. 5. Differential light transmittance foru518 V. The value
of Dn is 0.088 in the upper graph and 0.15 in the lower one.

FIG. 6. Dn dependence of the averaged light transmittance
the GOA and the Jones calculus atu518 V.
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BD# only for values of thez coordinate close to the midpoin
between the substrates and deviate significantly from th
diagonal planes in the near-substrate regions. Because o
feature, the effect of ray focusing in the HMD cell is le
pronounced than in the 2D cell.

Figure 7 displaysT(x,y) for the director patterns calcu
lated in two ways: using the model proposed in Refs.@30–
32# and direct computer calculation atu512 V and Dn
50.088. The main idea of the model is to numerically so
the dynamic equationg1] tn̂52dF/dn̂ for the director using
a corresponding exact expression for the free energyF but an
approximate analytical expression for the electric fieldE. In
contrast, the previously used methods of direct computer
lution ~e.g., the relaxation method! do not use an approxi
mate form for the electric field but instead solve“•D50 to
get the electric field after each director update, based on
dynamic equation. As was shown in Refs.@30# and@32#, the
proposed model helps to understand better the director
electric field behavior in liquid crystal cells and is muc
faster than direct computer calculation, giving essentially
same results for the director distribution. Figure 7 show
good agreement inT(x,y) between the model and direc
computer calculation, which can serve as additional con
mation of the accuracy of the model. Figure 8 shows
voltage-dependentTav ~TV curve! for the voltage range tha
is relevant for display applications. The agreement betw
the model and direct computer calculation is good.

Figure 9 illustrates the voltage dependence ofTav for dif-
ferent values ofDn using the GOA. WhenDn is relatively
small (Dn'0.06 or smaller!, the correspondingTV curve
increases monotonically, reaching its asymptotic val
which corresponds to the director pattern, atu5`. For
larger birefringence, a maximum on theTV curve appears a
someu5u* . When Dn increases further,Tav(u* ) and u*
decrease. After passing the maximum (u.u* ), the light
transmittance decreases with increasing voltage and fin
approaches its asymptotic valueTav(u5`),Tav(u* ). This
type of voltage dependence ofTav can easily be explained
qualitatively. For a largeDn, even a relatively small averag
deviation of the directorn̂ from its homeotropic distribution
n̂56 ẑ ~at some small voltage! produces the optical path
r

FIG. 7. Differential light transmittance for the model and dire
computer calculationu512 V andDn50.088.
2-8
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differenceSe2So which corresponds to the final orientatio
of the polarization of the outcoming radiation along t
transmittance axis of the analyzer. In this case the light tra
mittance is maximum. A larger deviation ofn̂ from n̂56 ẑ
rotates the polarization plane further, and the light transm
tance decreases.

Figure 10 presentsT(x,y) in both the GOA and the Jone
calculus models but for smaller geometrical sizes of
HMD cell: period 2L520mm and the electrode widthl
53.33mm (d55 mm is the same!. Clearly, the difference
between the GOA and Jones calculus models in this cas
more significant than for the cell with larger sizes~compare
with Fig. 4!. Finally, Fig. 11 comparesTV curves produced
by the GOA and Jones calculus models also for the cell w
reduced sizes. It shows that foru.8 V the difference be-
tween the two methods is significant~which is in accordance
with Fig. 10!. The difference between the GOA and Jon
calculus results forTav in the case of the experimental cell
very small for the voltage rangeu<25 V. ~It is not shown
here because the difference is so small.! A qualitative expla-
nation of these last results is as follows. There are two
gions of lateral director variations. The first one correspo
to the wall defect area. In this region the characteristic d

FIG. 8. Averaged light transmittance vs voltage~TV curve!. The
solid curve is calculated using the model and the dashed curv
obtained from direct computer calculation.

FIG. 9. TV curves for different values of the birefringenceDn.
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tance of the director variationl is of the order of the electric
relaxation lengthj. For high voltagej may be comparable
with l, and even the results of the GOA forT(r ) across this
region may be only qualitatively correct. However, becau
the volume of the wall defect region is relatively small, i
contribution toTav is also small. In the second region~the
rest of the cell! l is of the order of the corresponding ge
metrical sizes of the cell. For this celll 5 l el ~wherel el is the
electrode width! may be chosen. Even in the case of t
reduced geometrical sizes of the cell considered here,l el is of
order of several micrometers, 1/k0l el!1, and the GOA is still
applicable. It is clear, however, that for the reduced cell thx
andy derivatives become more important. For this reason
difference in results between the GOA and Jones calcu
methods increases with decreasing 2L and l el , because the
latter model completely ignores these derivatives, and
Jones calculus method becomes questionable. In such a
ation, taking into account also that the calculational times
both the GOA and Jones calculus methods are compar
~and much smaller than in the case of the FDTD metho!,
the GOA is preferable.

is
FIG. 10. Differential light transmittance for the GOA and th

Jones calculus models for the HMD cell with reduced sizesu
510 V, Dn50.088.

FIG. 11. Averaged light transmittance vs voltage~TV curve! for
the HMD cell with reduced sizes andDn50.088.
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IV. CONCLUSIONS

The geometrical optics approach has been applied to
calculation of the differential and averaged light transm
tance for the case of a liquid crystal film whose direc
varies in three spatial dimensions. A liquid crystal cell th
exhibits the homeotropic to multidomainlike transition w
considered as an example of the GOA application. The G
provides a fast method of calculating the light transmittan
~almost as fast as the Jones calculus method!, giving a more
accurate description than the Jones calculus results for a
nt

A

g.

-

-
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uid crystal cell whose director variations occur on the m
crometer scale and comparable results for cells with va
tions on larger length scales. The GOA is especially use
for a 3D cell when the finite difference time domain meth
is extremely time consuming.
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