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Model for the director and electric field in liquid crystal cells having twist
walls or disclination lines
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Two examples of the director structure and electric field in patterned electrode liquid crystal cells are
studied using a recently developed calculational model. First, a display cell that exhibits a
homeotropic to multidomainlike transition with twist wall structures has been considered for a liquid
crystal with positive dielectric anisotropy. The model elucidates the behavior of the electric field.
Calculations show good agreement between the model and direct computer solution of the Euler—
Lagrange equations, but the model is at least 30 times faster. Second, the possibility that a cell has
+1/2 disclination lines instead of a wall defect is probed. A temperature dependent estimate for the
size of the defect core is given, and the total free energy of the cell with disclination lines was
calculated and compared with the corresponding value for the same cell with wall defect structure.
© 2002 American Institute of Physic§DOI: 10.1063/1.147761]3

I. INTRODUCTION with +1/2 disclination lines and its free energy will be de-

- . scribed.
For the last several years liquid crystal display€Ds)

havg become i_ncreasingly used in laptop cqmputers, TVs anﬁi_ MODELING OF THE HMD LC CELL
monitors. The image quality and the resolution of LCDs have
been improved. Most of the newly developed LCDs, with ~ As was shown in Ref. 7, the HMD LC cell possesses the
wide viewing angle, good color characteristics and fast refollowing symmetries:(1) 2L periodicity along both the
sponse time, possess a multidimensional director distributioandy directions for any variables2) mirror symmetry with
which means that the directar depends on two or three respect to the vertical planesat=L/2, =3L/2,..., andy
space coordinates unlike in the case of twisted nematic dis= *L/2, =3L/2,...; (3) “twisted symmetry,” where, for ex-
plays. Among these new devices are a LCD which combinegmple, ®(x,y,z)=®(y,x,—2z), and (4) electric potential
the concept of in-plane switchingPS) with vertical align-  that satisfies the relatio®(x,y,z)=—®(—-x,—y,z). Due
ment (VA),1=° a display associated with a homeotropic to to these symmetries, it is enough to consider only the volume
multidomainlike (HMD) transition®” fringe-field switching  inside the right triangle prism with the triangleOAB as its
devices®® and a liquid crystalLC)  cell with patterned horizontal cross sectio(see Fig. 2 and then extend the re-
electrodes? As LCDs become more sophisticated, accuratesults of calculation of the director and electric field to the rest
and effective LCD modeling methods are becoming increasof the cell using symmetry. As has already been nteu
ingly important. different defect structures are conceivable for the director
In earlier publicatior® a model was developed to de- configuration: one with a system of wall defects and the
scribe properties of LC cells with wall defect layers whare other with disclination lines. For small voltagesa simple
lies in one plane and there is no twist deformatisae Fig. estimaté indicates the configuration with wall defects will
1). The purpose of this work is, first of all, to generalize theoccur. Also, the results of light transmittance measurerfients
model to describe a LC cell with a twist wall and, second, tohave been interpreted in terms of a system of wall defects, at
modify the model to include the possibility of cells with least for the most interesting range of display voltages,
+1/2 disclination lines. <20V. Thus, for the HMD cell the director configuration
An example of a LC cell with twist wall defects is a
HMD display (see Fig. 2 It has a three-dimension&BD)
director n and electric fieldE. The electrodes and surface
coating of the HMD display are prepared in such a way that
in the absence dE the LC alignment for a nematogen with
positive dielectric anisotropy, is homeotropic. Strong ho-
meotropic anchoring occurs at the cell substrates. In Sec. Il a d -/ H N\
model is developed to descrilmeandE for the HMD mode
for voltage differencesy, that are high enough that the trans-

mittance of light is observable. In Sec. Il a simplified but + u/2 2=0 - u2
still accurate way of calculating the LC alignment of a cell - ——— :

12 1 x=0 1 L2 X
3E|ectronic mail: georgy@columbo.kent.edu FIG. 1. Schematic diagram of the 2D cell.
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Y ) A. Approximation of the electric field
TL : ) N .
N - L+ N To find a reasonable approximation fir let us intro-
— - = duce high voltagee"= —V®" and low voltageE'= — V&'
------ e R asymptotics as the solutions of the corresponding equations,
: 2 V. 20"+ 9,2p"=0, (5
s : 0 - V.20 '+ (/€,)9,2d'=0, (6)
L : L . .
: : with the conditions®"'(r)=+u/2 on the electrodes and
_______ Bpero TOP L Nip ] E™!(r)—0 when|z| . Equation(6) is the Maxwell equa-
15 : - tion V-D=0 with n=Z everywhere inside the cell. Here the
: ; subscript “L” for a vector means its components are in a
porrou| 21 | i BofToM plane perpendicular to the axis, specifically, V, =Xd,

+9dy,. The solution®"(r) was obtained and it is described
FIG. 2. Top view of the HMD cell. The electrode planes have coordinates ofin detail in Ref. 7[where it was denoted,(r)]. Similar to
z=*d/2. Planes of mirror symmetry are shown as dotted lines. q)h(r)’ the solutiorrb'(r) may be represented by a truncated
Fourier series and can be produced frdmi(r) with the
following substitutions in the Fourier coefficienfsee the

with wall defects is the most important to consider. Wall {€Xt between Eqs49) and(50) in Ref. 7:
defect layers lie approximately along vertical diagonal planes €
like the UZ plane in Fig. 2 which is the center plane of the  Bpg—dpq 2+ & (tanhdg,+cothd;) |,
defect. Along these wall defect layeEs is approximately 9
perpendicular to directon, the torque due to the electric €
field is close to zero and the director remains close to ho-  Gmpg— €5 _— d5 am(tanhd;;,— cothds ),
meotropic even in the presence Bf g
Taking into account these symmetries, the total free enwheree= (e, /€))% dj,=med[(2p+1)?+4g?]"%2L and

ergy of the system can be written as we took into account that the medium outside the LC slab is
a uniform glass plate with a dielectric constait[see the
F:J dpfdlz dz(f 4 — -2 text after Eq. 60 in Ref. 7 The low voltage potential in the
—d2 at el g glass plates is determined by formul40) in Ref. 7, but

®, c=>' inside the LC film is determined from E¢39) in

XJ dp( f_d/2+ jw dz B (1) Ref. 7, whered, in this equation must be substituted by
— dr2 ’ d!
par
As was shown beforéfor relatively high voltages it is
where possible to provide a reasonable description of the cell by
K K K dividing it into two near-substrate layers with thicknesses of
fd:%(v.n)z-f— ?z[n-(VXn)]va 73[n><(V><n)]2, Aj~A,~2¢ [¢=(4mK3l€e,)Y? is the correlation length,

where K13=(K;+K3)/2] and a bulk region between them
(2) where E~E". On the other hand, in all the displays men-
and tioned in Sec! d is much less thark (usually diL<0.2.
Thus, to estimate the influence of the substrate layers on the
€, , €L _, electric field, one can negled, in the Euler—Lagrange
fo=— g(n-E) - E°, e€,=¢—¢,>0. 3 equations for the director and electric field. Neglectihgin
the Maxwell equatiorV X E=0 shows that one can also ne-
Due to symmetry, the integration overin the horizontal glect thez derivative ofE, . This means that small length

plane can be restricted to triangeO AB. scale changes in the director field near a substrate do not
The main idea of the proposed motlisl to numerically ~ produce the same significant change€in. In such a situ-
solve the dynamic equatibh ation E, ~E" even across a near-substrate |dy@mitting
V, in the Maxwell equatiorW-D=0, one can fincg, from
y1dh=— 6F/én (4)
V-D~4,D,=0. (7)

using the exact expression for the free energy but an approxi- ) i o )

i i fi i i Thus, in the first approximatio& ~E", and, after integra-
mate expression for the electric fiekelfound in this work. ' ' LBl '
Here v, is the rotational viscosity and flow is neglected. In fion Ed.(7), E; can be presented as
contrast, previously used methods of direct computer calcu- g _r. h ten E" nooen -E'nolesl (8
lation (see, for example, Refs. 12-)1do not use an approxi- ezt €alMim Ernzn—n1 BN ez, (8)
mate form for the electric field but instead solVeD=0 to  wheree,,— €, + ean§ and index “m” means thaz=0 must
get the electric field after each director update, based on Edpe taken in the corresponding val@®=0 is the midpoint
(4). between the substrafes
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FIG. 3. E,(x,z=d/2) atu=14V in the 2D cell obtained frorte) the model,

(b) direct computer solution, an@) E". FIG. 4. E, dependence on the coordinate at 14 V in the HMD cell calcu-

lated by the model and direct computer calculation for different values of the
u coordinate(in wm).

When u decreases, the bulk region shrinks and finally
disappears ati<up, whereup can be estimated from the |ayer onE in this case of the twist wall defect unlike in the
relation 4¢=d. For the experimental set of HMD cell >p case wheren bends and splays across the wall defect
parameter§,u,=8V (dark state for this display obsenfed region

. . e h "

for u<5V). Whenu<u,, E, deviates significantly fronk, However, it is important to take into account another
and formula(8) fails to describez, properly for the impor-  featyre of the electric field. In the 2D case values|Bf
tant region of smallp|. The same arguments as those in Ref._ gl|/|EN are small: 0.025 inside the wall defect layer and
4 provide us with the following expression fé&,(u,v,2): 0.2-0.25 in the region close to electrode edges. In the HMD

E,~(e./e)n, -EN+E., (99  case these values are about 0.1 and 0.6-0.7, respectively.

i ) The simplest way to take this fact into account is to approxi-
when|v|< 8, wheredis the largest value of the coordinate  mate the electric potentiab(r) for any voltage by

for which the approximate relatios,~ ¢, is still satisfied N |
with about 10% accuracy. The value &fis a function ofu P=a®"+(1-a)P, (10)

and the other cell parameters and is found in the course Qfhere, in the simplest approximation, is a parametefa
solving Eq.(4). For low voltages, whem<uo, dis rela-  goes not depend on. It is clear thatd satisfies the bound-
tively large (it may be comparable tt/2), but whenu in- ary conditions of the electrodes and wHej—. After sub-
creasesg decreases quickly and for=10V, §<¢ and Eq.  stituting Eq.(10) into the free energf, one can minimizd

(8) is applicable for alb. Itis worth mentioning that formu-  py choosinge as a solution to the equatiof,F = 0. Using

las (8) and (9) are a direct generalization of relatiof®4)  Eqs. (5) and (6) for "', noticing that®"—®'=0 on the
and (26) in Ref. 4 obtained in the course of describing theglectrodes and;9,®"' = ,0,®™ on the rest of the LC—
two-dimensional(2D) cell and can be produced from EGs. glass interface, it is possible to exclude integrals over the
(24) and(26) in Ref. 4 by substituting), Ef—~n E! . Aswas  glass substrates and finc=B/A, where

shown in Refs. 4 and 5, for higher voltages, whenu,, EQ o

for .the 2D cel! must be also modified in the wall’s defect B:J' dpf dz[n-E'(n-E'—n-Eh)—E'Z(E'Z— EQ)],

region to take into account small length scale changes in the —di2

director field across the wall’s defect layer wherchanges o

from homeotropic at the center of the defect to close to pla-  p— B+J dpj dZ EN(E'—EM

nar distribution outside. According to those director varia- —di2

tions, the largest componeRt, of the electric field which is h | h
perpendicular to the wall's defect layer, also changes signifi- —n-E(nE-nEY].
cantly, having a peak in the center of the wall defect layetwWhenu—0,

(see Fig. 3. On the other hand, as follows from the geometry

of the HMD cell, the electric field componeBt, perpendicu- n-E—g&; B—0 and a—0.
lar to the wall defect layer is negligiblaunlike in the 2D On the other hand, ifi— oo,

case. The largest field componet, is now along the wall- h h | h hel  —h
defect layer. It causes to twist in the wall layer, but E, n-E—ELn-Ei(n-E—n-BH—~ENE-EY,
itself does not show any peculiarities inside the layer in FigA—B anda—1. Figures 5 and 6 display the voltage depen-
4. This means that one can neglect the influence of the wallence of« and thev dependence oE,, respectively;u
defect =o corresponds t&=E".
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k S T XYZsystem 45° around th&axis counterclockwisésee Fig.
09 2). The corresponding symmetry relations foare
08 T
o7 b . n(r')==RYn(r), r'=Rr,
06 | h 12
5 o5t i n(r")=—-=R’n(r), r"=Rlr, (12
04+ ’ and they differ from Eqs(11) due to uncertainty in the signs,
08 : because ofn— —n equivalence. To take into account all
oz | those possibilities, a tensor Q representation for the Frank
o1 r , free energy densit}t "18f=f4+f,, inside the LC cell with
0 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 . “2~(2) s —2~(2)
U (Volts) fd:ﬁ(K3_K1+3K2)SO Gl + E(Kl_KZ)SO G2
+ 3(Ks—K1)so °Gg™, (13

FIG. 5. Voltage dependence af

€a € 2

fe=— g EiEQik— g E% (19

B. Boundary conditions for the director 0
(2)— (2)— (3)
Let us consider now the choice of boundary conditions™ay Pe used. Her&;™'= Qi Qik,1, Gz"'= Qi Qi 1, Gg

for Eq. (4). Because of strong homeotropic anchoring at both™ QikQim,iQim k» Qik,1= JxQix and
substratesn=2 at z= +d/2. The choice of boundary condi- — ~Frank_ 1
. ' . . ik=Qix" =So(NinK—35ik)- 15
tions along theUZ or VZ planes is not obvious. One can Qu= Qi o(NiMi— 30) (19
choose, of course, a larger volume for the director descripHeres, is a scalar order parameter which is assumed to be
tion, for example, a rectangular prism with the rectanglespatially constant but to vary with the temperature in the
ABB,A; of Fig. 2 as its horizontal cross section, and thennematic phas&’ In this representation, the boundary condi-
use mirror symmetry to derive appropriate conditionsror tions for Q;, are completely determined. Along th&Z plane
along the vertical planes at==*L/2 andy=*L/2. How- N mu T
ever, this would decrease the speed of the calculation drasti- Qi(r")=RzQi(r), if ik=uu, vv, vz, zz
cally (more than 10 timesTo find nin t_he s_m_allest pos_sible Qi(r’)=—RUQu(r), for ik=uv, uz (16)
region of the HMD cell(the triangle prism it is convenient
to describe its symmetries as follows. First of all, the sym-and along the/Z plane
metry of the electric field can be represented in the following
way:

E(r/):Rl_;ITE(r), r'=RiI’, Qik(r")=—R:’TQik(l’), for ik:UU, vZ.

E(r")=—RUE(r), r"=RYr, (11) The_sameQ representation of the Franl_< free energy can
_ _ _ _ _ be applied, of course, to the 2D cell which combines the
wherer is an arbitrary point an®7, is a rotation byr about  concept of IPS with VA(see Fig. 1 The symmetry for the

the « axis: a=u or v means a rotation around théor V. electric field and director for that cell may be described as
axis of theUVZ coordinate system produced by rotating theg|lows:

Qi(r")=RYQy(r), for ik=uu, uz, vv, zz
(17)

E(—x,2)=—-R%E(X,2),

0.14 T T T T
A — = +R?
fé- usinfinity ~o— n(—x,z)==*=Rin(X,z), (18
0.12 1 R ﬂ:}S P whereR?Z is the rotation byr around thez axis. Again, using
27 o4k A'/xx | u=8 : ] the tensor representation, Eq$3)—(15), the boundary con-
. A XX U=0 -

ditions forQ;.(x,z) along thex=0 line can be established as

Qii(_x!z):Qii(sz) QXZ(_Xiz):_QXZ(XIZ)i (19)

7 whereii =xx or zz

Application of theQ representation to the HMD model
with the boundary conditions, Eq&l6)—(17), produces di-
rector configurations with wall defects at least tox 30 V,
if an initial director distribution along th&/Z plane does not
deviate significantly from homeotropic. As our calculations
25 show, in all such situations the resulting director and electric

-V (,LLITI) field distributions coincide with the corresponding distribu-
tions which can be found if one uses the more common

FIG. 6. Shapes dE(u=0p,z=0) at different voltages for the HMD cell;,  Vector representation, Eqd)—(3), and the following bound-
u=infinity corresponds t&!, andu=0 corresponds té!, . ary conditions for the director:
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FIG. 7. ny(u,v,z=0) in the HMD cell at 7 V, calculated by the model and FIG. 8. ny(u,v,z=0) in the HMD cell at 11 V calculated by the model and
direct computer calculation for different values of theoordinate(in wm). direct computer calculation for different values of theoordinate(in um).
n(r’)=—RYn(r), r'=RYr, ures show good agreement between the model and direct
" (20) computer calculation. The difference between the two results
/A 1 n __ . . . .
n(r’)=—-Ren(r), r"=Rer, is usually within 3%—4% for all coordinates.
along theUZ and VZ planes. Thus, for the voltage range It is clear that the model must be faster than direct com-

most relevant for display applications, one can use the simputer cal.culatlholn for .the following reason. As follows from
pler and about 1.7 times faster vector representation for dithe SolutionsE™" outside the LC ce'IT,t.he decay of the larg-
rector calculation inside the triangular prism volume and usé&St(lowesd harmonics of the electric field is determined by a
boundary conditions, Eq$20). factor exp 7-r|z|(2L)._ Because dl_< 0.2, it _needs about/d
Exactly the same situation occurs for the 2D model. Ap-Moré mesh points in the direction outside the cell than
plication of the tensor representation with boundary condiinside it, which increases the_calculatlon time significatftly.
tions, Egs.(19), along thez axis shows that the resulting However, the gain in calculation spebti(how much faster
director distributions correspond to a wall defect structure, ith® model is compared to direct computer calculatide-
an initial director distribution deviates not very far from ho- PENds on several factors. It depends on the dimensionality of
meotropic along th&=0 line. In such a situation, again, the " @nd the type of director representatigensor, vector o
vector representatiofor even @ representation, when one representation Our calculation shows tha depends also

chooses=& sin #—2zcosé) with the boundary condition on the method of calculation applied during simulatidfts
, example, the method of simultaneous substitutions or the
n(—x%,2)=R7n(X,2) (21)  method of successive substitutiofs
along thez axis may be applied, with the same res(fts. In the case of the 2D model whenlies in one plane¢

However, in both HMD and 2D cases, in principle, an representation was used for both the model and direct com-

alternative director configuration witht1/2 disclination
lines is possible. Using the 2D cell as an example, LC align-
ment and the corresponding free energy for the director con-

figuration with disclination lines will be calculated and ana- u=0.com -+-
lyzed in detail in Sec. Il C. u=5,mod -8-- 4
u=5,com -x--
u=11,mod -&-
C. Results of the director calculations for the HMD u=11,com -*-- |
cell u=14,mod -<
u=14,com -+

The results of the director calculation for the HMD cell
are illustrated in Figs. 7-9. We have used the set of experi-
mental cell parameters from Ref. 6. To compare this model
with other methods of director calculation, the usual relax-
ation method for computing the director and electric field
was also developed for this 3D LC cell. Figures 7—9 show
ny(u,v,z=0) as a function ob for different values of the
coordinate and different voltages. For all these figures we
calculated director components in two different ways: our
model (taking into account the corrections described abovegg_ g, ny(u,v,z=0) in the HMD cell at 16 V calculated by the model and
and direct computer calculatidrelaxation method The fig-  direct computer calculation for different values of theoordinate(in um).

ny(u, v,z = 0)

0 5 10 15 20 25
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fL=%Lle<12>+%L2652>+Fb<Q>—Fb<QF>—CEiEkQ(ik,)
22

may be used inside regiohBCDC,B; in Fig. 10b). Here
Q=Qj is a symmetric and traceless tensor order parameter,

®) G{? and G are determined by the expressions following
Eqg. (13), and

SRS

TN Fp(Q)=3aTrQ*= BTrQ%+ y(TrQ%)2 (23
io0 | ldz In Egs.(22) and (23) e=a(T—T*), a B, % L;, L, and C
are constants an@* is the lowest temperature to which one
/ BlAf """" B \ could supercool the isotropic phase. Typical experimental

‘_"dx values ofa, B8, y andT* are shown in Refs. 19—21. Outside
dre2d the defect coreQ must coincide with the uniaxial Frank
Z= X

form, Eq. (15), which means thaf (Q) — F(Qg) disappears
far from the core region. The nematic scalar order parameter

FIG. 10. (a) Director pattern in the region along the lire=0 in the case of ~ far from the defect coresy, can be found from the equation
i1/2 disclination lines(b) _scher_nat!c distribution aﬁ in thexzplane in the ds Fb(QF) =0. The result is
vicinity of the 1/2 defect line with its center at poifit 0

3B

S = —

puter calculation. In this situatioM is about 30—50M is " 16y

larger for higher voltaggsvhen the method of simultaneous As is known, this form of Landau—de Gennes free energy
substitutions is applied. Use of this method is appropriate t(?jensity leads toK ;= K3=(2L1+L2)s§ and we approxi-

investigate the realrotationa) dynamics ofn toward the mated these values biK{ + K5)/2 with experimental valués
equilibrium configuration. However, calculations show thatof K, andK during calculation of the LC alignment inside
if one switches to the faster method of successive substituy, (ore. Comparison of Eq&L3), (14) and (22) shows that
tions with an appropriate choit®of the overrelaxation con- in such an approximatioh Lz’andC may be chosen as
stant,w (simply to find the final director distributiondirect Li=K,/(2542), Lo=(K,— K,z)/Soz andC=e,/(87sy).
computer calculation becomes about two times faster than Outside the defect core the Frank theory is correct.

simultaneous  substitution. However the model improve§y g eqver, because the director configuration with disclina-
even more andl is in the range of 130—-300n this caseM tion lines is more likely to occur at high voltages for which

is smaller for higheu). our model is especially accurdté the model approach can

In the case of the HMD cell in the vector representation,e ;seq 1o calculate the director configuration outside the
and using the method of simultaneous substitutions, th§.tact core

model gl|vesM~2'5—.40. Afrt]er SW'tCh'n,g to the method IOf To create the resulting director distribution shown in Fig.
successive substitution with a properdirect computer cal- - 145 5 particular initial director distribution must be chosen
culation becomes four to six times faster, a larger increase By the 2D cell under consideration. A key feature of the

sp_eed than in the 2D case. E’_>ut the moqlel increases its CaICHTitiaI alignment is that the anglé;(0.z) betweem and?
lational speed about 8—12 times, leadingMo-60—-80 for along thex=0 line must be nonzero, namely; (0.2)

all voltages(M is slightly higher for highew unlike in the > ¢* ~ /4 whenz,<z<d—z,, and¢,;(0,2)< #* outside
2D case. this intervall ¢(0,0)= ¢ (0,d)=0 for this cell.
Landau—de Gennes theory was applied in Ref. 22 in the

Iﬂ.JJ[;EI;FE@\SIINI\I,L,'\:'%I&JCL’IT\IL:EGSNMENT IN'ACELL WITH vicinity of the nematic—isotropic transition, whef —T* |
- ~1 K. The important result that was found is that the core is

An interesting and important example of application of biaxia® and does not consist of isotropic fluid, as was pre-
the model is to calculate the LC alignment for a possibleviously assumed® This result was also confirmed by Monte
configuration with two+1/2 disclination lines and its free Carlo simulatior’> where molecules were represented as
energyF'"s using the 2D cell in Refs. 1-5 as an example.hard spherocylinders with aspect ratios less than or equal to
Figure 1@a) shows schematically the director distribution in 8. However, the description of LC alignment in Ref. 22 was
the region along the %0 plane with disclination lines that given for the case of zero external field, and, thus, did not
are perpendicular to thez plane at pointz=z, andz=d consider the LC alignment outside the defect’s core. The
—z, with distancez; to be found and Fig. 10) illustrates purpose of the present investigation is to provide a descrip-
the director pattern in the vicinity of the-1/2 line defect. tion of LC alignment throughout the whole célising Frank
Frank theory(either in vector or in tensor representation theory outside the cofeand properly estimate'"®s for char-
cannot properly describe the director configuration inside thecteristic temperature® of LC display applications, when
defect’s core region. In particular, the elastic Frank free enT—T* <—10 K. First of all, it is convenient to rewritg_in

oy 12
1 ( 32 y) 24

1_3_ﬂ2

ergy diverge¥ if one chooses a finer mesh. dimensionless variables, measuring space coordinates in
To calculate the LC alignment an&'"S properly, units of (L;y/8?)? andF_ in units of 3%/y. The free en-
Landau—de Gennes theory with free energy density, ergy density will have the same form as Eg2) but with
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the following substitutions: L;—1, L,—C,=2(K; . 5 1/1
—K,)IKy, a—a=aylp? ,3—>,é:7’/,3, 7-’3’:32, and Lyl—Noryl=F(§bc050+5 Sp - (3D

C—C=€,7/(87Sp%). ChoosingQ,x, Quys Quz, Qy, and _ .
. : ; If b=0, which corresponds to the one constant approxima-
t [ te the Euler—
Q,, as independent variables, one can write the Euler jon (K,=K,=Kz), the ¢ dependence disappears in Egs.

Lagrange equations in terms of those variables and the o
solve them numerically using the relaxation metfodnd tio?_(31)' and Eq(30) reduces to the modified Bessel equa-

boundary conditions to provide the correct asymptotic be-
havior at large distance from the core. These boundary

. - ) . Yort'Yorr — Néryozo- (32
conditions will be discussed later after we describe the

asymptotic behavior o®;, . For this particular LC cell it is
possible to speed up calculation@fy by solving the Euler—
Lagrange equations only on the right h&lBCD (see Fig.

One of the two independent solutions of E§2), Ky(Ngr)
[whereKy(z) is the modified Bessel function of zero ordler
decreases exponentially with asymptotic behavior,

10) of the whole defect region using the symmetry of the cell
which gives us the following relations:Q;i(—dr,z) Yo~ —exp(—Ngr), c=const,
=Qii(dr,2), wherei=x, z and Q,,(—dr,2)=Q,,(dr,2), I
Qu—dr,z)==Qy,(dr,2), QyA—dr,z)=—-Qy/(dr,zZ)  atr—co. In a more realistic situation in which#0, the
[see also Eq(19)]. Heredr is a mesh step inside the core decreasing solution of Eq430) picks up § dependence, and
region which was chosen to be the same for botindz  the asymptotic form is

directions. To obtain the correct boundary conditions for
solving the Euler—Lagrange equations, we assume that far
from the centelO of the core region, in particular, along its
border of ABCD, Q;, has its Frank form,

(33

c
yo(r,a)%Texq—N(G)r], c=const. (34
Substituting Eq(34) into Eq. (30) and keeping the leading
terms for larger, one comes up with the following equation
for N(6):

(So+Y)(NiNK—35i), (25

wherey(r) is small with respect ts, andn, , are close to
values ofn,=sin(#/2), andn,= —cos(@?2) in cylindrical co-
ordinatesr, and 6 with the center aD. Like in Ref. 4, we
represent the directan for x=0 (and outside the cojeas
n=SX sin¢$—2cos¢, where ¢ is the angle between andz.

In order to describe the asymptotic behavioK®f, it is
convenient to rewritef, in cylindrical coordinates in the
asymptotic region, where the dimensionless coordimate
large andQ;, has its Frank form, Eq(25). The resulting
Euler—Lagrange equation foi(r) can be written as

(1+b cosf)N?>—2b sinNN,+ (1—b cosf)N2=Ng,
(35
whereN,=dJ,N(6). The desired solution of Eq35) must

also satisfy the following conditionsN(8+2m)=N(6),
N(6)>0 for all 6. The exact solution is

N(6)=Ngy(p+qcosh), (36)

where p=[(1+b)¥?—(1-b)¥3)/2 and q=[(1+b)*¥?+ (1
—b)¥?]/2. For experimental valug8 K,;=1.32, K,=0.65

. , 1. and K;=1.83 (in units of 10 ® dyne, C,=2.89 andb
Ly—Nory =+ (3bcosf+9)s,. (260 =0.33<1, which givesp=1.04 andq=—0.17.
L ~ The particular solution of inhomogeneous Eg1) can
In this equation_y =L,y + L,y with easily be found as a series in 2 y,(r,0)=y{%(r,0)
. +y{B(r,0) +,..., where
L,y=(1+bcosh)(y,+y,r)—2bsindy,, yi(r.6)
1
1 0= _ (—bc030+5 , 3
+=(1-bcost)y,, (27) 1R\ 2 St
. 1 .. 1
. 1 () = T (-1 " -
Loy=b| —sindy,—cosey; |, (28) Y1 Nar Ly, T zmen 15120
and A characteristic ratio|y{"/y{”)| can be approximated as
4/(Nor)? and is relatively small for =10, taking into ac-
3C, 12 a| +32ys3 9(1+C,/2) count that usuallyN, is between 1 and 2.
b= [ Cy %7 T 2C, (29 Our estimates and calculations show that ifer10 the

exponentiallhomogeneoysparty, of the complete solution
y=Yyo+Yy; becomes negligible with respect §o, which
means that the final asymptotic behavior for largean be
approximated bw1~y(1°). Taking into account the approxi-
mate form of Eq(25) for Q;, and the asymptotic behavior of
(30) Eqg. (37) of y(r,d), one can write that, at large, d,y

~—(2Ir)y=—(2Ir)(s—sp), or, multiplying this relation by
andy, is a particular solution of the inhomogeneous equathe factor f;n,— 6;/3), the following relation betwee®;,
tion, and its radial derivative at somre=r. can be written:

where C1,=12+5C,, Y, =a:Y, Yo=Y, Yor=05Y, Yoo
=42,y andy, =d%y. A solution to EqQ.(26) is given byy
=Yyo+VY1, Wherey, is a general solution of the homoge-
neous equation,

Lyo—N3ryo=0,
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2 1 0.02
Q= — T Qik—So( nink—3 5ik) : (38 . 00t
2

This relation was used as the boundary condition in the LT-? 00?
course of solving the Euler—Lagrange equations inside re- e
gion ABCDandr=r.(6) describes the contodBCDwhen g -0.02
0 varies from 0 tor [r (0) corresponds té\]. £ 003

Let us now estimate .(7/2)=dx, a characteristic di- P~ -0.04
mension of the defect core. Whegrnis nonzero in the vicinity L -0.05 4/
of contour ABCD, Frank coefficientX; acquire additional s |
factors of orders/sy, wheres/sy=1+Yyl/sy in the region p: 000 E
adjacent to the defect core. If we assume tlyaso|<As, a ~ 007 ]
small number, it will also affect the director distribution in -0.08 O —
that adjacent region with the same order of magnitide 15 20 25 30 35 40 45 50 55 60
However, our calculations show that if the director distribu- U (V)

tion alongABCD changes by 0.1%-1%, the entire free en- _

ergy changes only by 0.01% or less, which means that thtgu'g' dlh}fér\gor:tcagi?i‘ff‘_jﬁncfi “C?'; i"{gﬁ)ég@'m’zc‘s'ﬁe;gnétempe""'
impact of this initial director deviation also decreases away ’ ’ ’ '
from the defect region. Taking this information into account,

we chooseAs=0.001 which gives the following estimate: obtained using the Frank free energy everywhere inside the

1/ 8\¥2 LC cell differ by 20%—-30% from the Landau—de Gennes
N, ( A_S) (39  values.
Because the shape of the defect core is roughly a circle
(we neglected Otbcose with respect tos for simplicity). To  (see also Ref. 92and due to the symmetry of this particular
estimate this size in real units, one has to multiply Bf)  cell, we used mesh sted 2dx along the region adjacent to
by the scaling factorl(; y/8%)"/2 Using Egs.(24), (29 and  thex=0 line. A variable mesh with an increase in mesh step
(39), one finds that, for example, AfT=—40 K, dx=12, or,  in thex direction was used to expedite director calculation in
in unscaled units of length, 100 A. Thus, for the temperatureuch a way that at a distance %~ 2¢ from the core region
range of—70 KsAT<—30 K, which is typical for display in the x direction an approximate relation oke 2dz is sat-
applications, #~100 A. It is worth mentioning that there is isfied. This is reasonable, because away from the defect core
always an “inner” core(with radius of about ¥/3) where  n varies smoothly. Inside the core region the mesh step in
Qix deviates significantly from its Frank form. both thex and z directions was chosen to be = dx/n,
Because the electric correlation lengthis more than  wheren=20. Increasingn several times does not affect the
(0.2-0.25 um for the most relevant voltage range of results appreciably.
<100V, the length scale of varying LC alignment inside the  Calculations ofQ;, inside the core show that the behav-
core region is about 100 times smaller than outside it. In theor of its eigenvalues foAT<—10K is qualitatively the
other words, the characteristielasti free energy density same as foAT~—1 K, which was shown in Ref. 22. The
inside the core which is of ordet/(dx)?, is three to four region where those eigenvalues and free energy defisity
orders of magnitude larger than the characteristic free energyiffer significantly from their asymptotic values, however,
densityK/ &%« e,E?/41r created by applying electric fiel.  shrinks when the temperature decreases in accordance with
This comparison shows that one can determine LC alignmergur estimate, Eq(39), and with Eq.(24). Figure 11 illus-
inside the core region of a disclination lirdescribed by trates a comparison between total free energies of the direc-
values ofQj,) independently and prior to Frank calculation tor configurations with a wall defect structur& () and
of the director outside the core region. The accuracy of valwith two disclination lines Fj,.d. As is seen, the critical
ues ofE inside the core does not affect the accuracy of thisyoltageu, , at which this difference changes sign, is esti-
calculation significantly. By minimizing the free energy, Eq. mated to be about 24—25 V. F&«T< —30 K the relative
(22), with respect toQ;, using Eq.(25 and neglectingy  difference € q— Fiined/Fwan d0o€s not depend significantly
along the border oABCD, one can determine director angle on the temperature, which is clear from Fig. 11. We have also
¢ along this border, particular by at poirisand C, from found that the total free energyF i, inside the defect re-
B . 2 gion depends very weakly on parametexs and y of
f=arcsinQu/Sot1/3) 7% (40 Landau—de Gennes theory. In particular, independently
We found that values ap at those points differ by about 1% changingB andy by a factor of 2 produces only about a 5%
from the valuesp= 6/2 (22.5° and 67.5° at point8 andC, change iNAFi,.s, and a change ia by a factor of 2 affects
respectively. It is worth mentioning that not taking into ac- AF s less than 1%. Because the ratioF ji,es/ Fjines itself
count Landau—de Gennes theory inside the core region, arig small(about 0.06 ati=15 V and decreases inversely pro-
instead using only the Frank theory everywhere inside theortional tou?), one can conclude that reasonable changes in
LC cell, would give incorrect values of the director at least ina, 8 andy cannot significantly alter the curves in Fig. 11, nor
the region adjacent to the defect’'s core. Our calculationsn particular,u, . Because those parameters sometimes are
show, for example, that the values ¢fat pointsB andC  not known exactly (unlike Frank constants this obser-

dx

Downloaded 11 Apr 2006 to 131.123.234.122. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



J. Appl. Phys., Vol. 91, No. 12, 15 June 2002 G. Panasyuk and D. W. Allender 9611

vation makes the results of the estimationugf more reli-  dynamic equation in the Frank region outside the defect us-
able even taking into account that Landau—de Gennes theoigg the director distribution obtained after 100—200 iterations
becomes only qualitatively correct for such small temperaas the initial distribution. Of course, it is possible to use
tures. direct computer calculatioiwhich includes solving the
As was mentioned earligsee the text that follows Eq. equationV-D=0) to determinen in the Frank region. How-
(24)], the Landau—de Gennes free energy derj§ity. (22)]  ever, it will slow down the calculational speed about 50- to
leads toK;=Kj3, which is inconsistent with experimental 100-fold as was already mentioned.
observations. As was shown in Ref. 15, including the third-  As one can see from Fig. 11, the defect structure with
order termL3Gg3), WhereL3=(K3—K1)/4sg, in the elastic  disclination lines for the 2D céif® becomes preferable for
free energy removes this degeneracy and reproduces the eéx>25 V. However, as was already mentioned, this final di-
perimentally observed dependence of the Franck elastic rector distribution is only possible if anglé;(0,z) of the
constantgat least for one LC material, PAAIncluding the initial director alignment is large enough. On the other hand,
LG term does not qualitatively change our calculationalapplication of theQ representation of the Frank free energy
scheme, but it does produce the following changegvith boundary conditiong19) shows, in agreement with
in Egs. (26)—(37): b—by=3(C,+2C350)/C13, N3—N32, experiments, that only the wall defect structure is realized,
= (12| +32983)/C1p3, 6— 83=[(9/2)(1+C,/2+Cysy/6) AL least foru<60 V, if the amplitude ofp;,; along thez axis
— (9/4)C4S; COSH)/Cyps, WhereCyos= 12+ 5C,+ 2C3s, and is small. A possible explanation of this result is as follows.
C350=(K3—K1)/K,. The estimate for xi [Eq. (39)] keeps Let us suppose that there is a fluctuatiomiwith a charac-
the same form with the changé— &,=(9/2)(1+C,/2 teristic size ofap=dx/3~50 A and angle of deviation o
+C35/6)/C1p3. The solution of the Euler—Lagrange equa- ~0-1<7/4 from n=—2 along thez axis. This produces an
tions for Qy is qualitatively the same. These modifications, Increase in the free energy of ordé( ¢/ag)® (whereK IS a
however, produce no visible changes in Fig. 11. Frank constant which is more than an order of magnitude
All calculations inside the defect core reported herelarger than the electric energy density evenuat100 V.
(e.g., the total free energywere made for the 2D celr® This means'that the electric force is qegllglble with respect
However, this way of determining the LC alignment in the to the glastlc force and the latter quickly suppresses such
core region can be applied to other cells with disclinationfluctuations.
lines such as ar cell'® with a 2D director. If there is no
symmetry(only periodicity ir_1 one directiop like in the Case |\, cONCLUSIONS
of a 7 cell, where the pretilt angle at the substrates differs
from O andwr, one has to solve the Euler—Lagrange equations A simplified model was constructed to describe the di-
for Qi in the whole defect region &ABCDC, B, using the  rector and electric field configurations in a multidimensional
same boundary conditions along its border. In a more comtC cell with a twist wall defect. This result is an extension of
plicated 3D cell(like HMD modse), this method of determin- the description of a LC cell that has a bend and splay wall
ing the LC alignment inside a topological defect may be usedefect with the director lying in one plane. The simplified
with small modifications. In this case a disclination line is model provides an alternative to the traditional method of
not, generally, a straight linesee, for example, Ref)7Con-  direct computer solution of Euler—Lagrange equations for
ditions along the line, such as the electric field, may varythe director and electric field in analyzing the behavior of
from point to point. However, because the core region idiquid crystal cells. The model is applied to describe a 3D
essentially two dimensiondspace derivatives along the line director in a LC cell which exhibits a homeotropic to multi-
can be neglectedit is possible to choose a local 2D coordi- domainlike transition. The calculations show good agree-
nate systenxzwith its origin in the center of the core and the ment between the model and direct computer calculation of
xz plane perpendicular to the disclination line at any pointthe director. However, the model is much faster. In the case
along the line. Then, using this coordinate system, one caaf using the method of successive displacement with an ap-
determine the LC alignment inside the core and along itgropriate choice of overrelaxation constant for both the
border with the outside Frank regigparticularly at points model and direct computer calculation the model is about
like B andD in Fig. 10b)] in the manner described above. 130—300 times faster in the 2D case and 60—80 times faster
Because accurate valuesifare not important in those cal- in the HMD cell.
culations, the result will be the same at any other point along  An approximate but still accurate method of treating a
the disclination line; in particular, one can choose core siz& C cell with *=1/2 disclination lines using Landau-de
dx from Eq. (39). Using relation(40) as the boundary con- Gennes theory inside the disclination core region was devel-
ditions for Eq.(4), it is possible to completely determimen oped. It was shown that deviation of the tensor order param-
the rest of the LC cell outside the disclination line. To local- eter from its Frank form far from the core center decreases as
ize the disclination line, it is convenient to first make 100—1/r2, wherer is the distance from the center, and has azi-
200 iterations of the dynamic equation in the tensor repremuthal dependence. A temperature dependent estimate for
sentation using only Frank free energy. After that thethe size of the defect core was found. The free energy of a
coordinates of a disclination line are known. Then it is pos-cell with disclination lines was calculated and compared with
sible to determine the LC alignment inside the topologicalthe corresponding value for the same cell with a wall defect
defect, as has been described here. Finally, knowing the bostructure. For typical values of parameters of Landau—de
der values ofn, one can complete iterative solution of the Gennes theory, the director structure with disclination lines
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