Tables of Incompatibilities

Table 1. Strong Oxidizer-Reducer Incompatibilities

(Chemical Safety and Disposal Guide, University of Wisconsin-Madison Safety Department)

When combined, strong oxidizers and reducers can result in a violent reaction. Therefore, contact between these chemicals must be avoided.

OXIDIZERS	REDUCERS	
Benzoyl peroxide	Group I metals: Cs, K, Li, Na, Rb and some of these salts	
Bromine		
Chloramides	Group II metals: Be, Mg, Ca powder, and some salts of these metals, including	
Chlorimides Hydrogen peroxide solutions	Grignard reagents, Ba and Sr	
Metal peroxides (i.e. sodium,		
barium, zinc)	Transition metals:	
NBS (N-bromosuccinimide)	Co, Cr, Fe, Mn, Ni, and V carbonyls	
NCS (N-chlorosuccinimide)	Al, Fe, Ni, Zn powders	
Osmium tetraoxide	AI, Fe, INI, ZII powders	
Salts and Solutions of:	Catalysts: Pd, Pt, Rh, and Ru	
Bromates		
Bromites	Others:	
Chlorates	Alkenes	
Chlorites	Alkynes	
Chromates	Amines	
Dichromates	Anilines	
Hypochlorites	Carbon powder	
Iodates	Hydrazine	
Manganates	Hydroxylamine	
Nitrates	Indoles	
Nitrites	Phenols	
Percarbonates	Pyrroles	
Perchlorates	Mercaptans	
Periodates	Phosphines	
Permanganates	Phosphorous (any color)	
Persulfates	Hydrides	
Selenates	Sulfides	
Vanadates	Silicone hydrides	
	Sodium dithionite or hydrosulfite	
	Solid Salts and solution of:	
	Hypophosphites	
	Phosphites	
	Sulfites	
	Sulfides	
	Thiocyanates	
	Thiosulfates	
	Cyanides	
	Sulfur powder	

Table 2. Toxic Gas Generation

Toxic gases can be produced when certain chemicals are mixed together, whether in a spill or breakage in a package. The following table represents the production of these gases with respect to the chemicals used to produce them.

COMPOUND	MIXED WITH	PRODUCES
Ammonium Salts	Strong Base	Ammonia
Azide Salts	Strong Acid	Hydrazoic Acid
Bromide Salts	Strong Acid	Hydrogen Bromide
Bromide Salts	Strong Oxidizer	Bromine Vapor
Bromites and Bromates	Strong Acid	Bromine & Bromine Oxides
Chloride Salts	Strong Acid	Hydrogen Chloride
Chloride Salts	Strong Oxidizer	Chlorine Gas
Chlorite or Chlorate Salts	Strong Acid	Chlorine and Chlorine Oxides
Cyanide Salts	Any Acid	Hydrogen Cyanide
Ferrocyanide or Ferrocyanide Salts	Strong Acid	Hydrogen Cyanide
Fluoride Salts	Strong Acid	Hydrogen Fluoride
Hypochlorite Salts	Any Acid	Chlorine
Iodide Salts	Strong Acid	Hydrogen Iodide
Methyl, Nitroso Amides (Diazald)	Any Base	Diazomethane
Nitrite Salts	Strong Acid	Nitric Oxides
Sulfide or Bisulfide Salts	Any Acid	Hydrogen Sulfide
Sulfite or Bisulfite Salts	Any Acid	Sulfur Dioxide

Table 3. Water or Moist Air Incompatibilities

(Chemical Safety and Disposal Guide, University of Wisconsin-Madison Safety Department)

Certain chemicals used in laboratories have the potential to react with water. Therefore such chemicals should not be kept in damp areas or in places where they might accidentally contact water, such as under sinks.

T 14 / T74 1 / Th / 4 4/1 NTY /			
Immediate Violent Reaction with Water	Immediate Violent Reaction with Water & Ignition in Air as a Result of		
Aluminum chloride, anhydrous Boron tribromide	Reaction Calcium carbide		
Chlorosulfonic acid	Group 1A, 2A, 3A alkyls, amides, hydrides and nitrides		
Diketene	Lithium aluminum hydride		
Fuming sulfuric acid (Oleum)	(lithium tetrahidridoaluminate)		
Magnesium chloride, anhydrous	NaK (sodium-potassium alloy)		
Methyl fluorosulfonate	Potassium metal		
Oxalyl chloride	Sodium metal		
Phosphorus pentachloride			
Phosphorus pentoxide	Absorption of Atmospheric Water Causes Heat &/or		
Silicon tetrachloride Titanium tetrachloride	Pressure Build-up		
Triethyl oxonium hexafluorophosphate	Alkyl chloroformates		
Trifluoroacetic anhydride	Calcium chloride, anhydrous		
Trimethyl oxonium hexafluorophosphate			
Trifluoromethane sulfonic anhydride	Chloroacetone		
	Chloroacetaldehyde		
Reaction with Water that Slowly Accelerates			
to Violence	Absorption of Atmospheric Water Causes Slow Hydrogen		
Acetyl chloride	Chloride Release		
	Arsenic, antimony, and bismuth trichloride		
Alkyl isocyanates	Dichlorodimethyl silane		
Chloroformate esters	Silicon, titanium, vanadium, germanium,		
Methane sulfonyl chloride	And tin tetrachloride, anhydrous		
Phosphorus tribromide	•		
Phosphorus trichloride	Toluenesulfonyl chloride		
Reaction with Water that Slowly Accelerates	Absorption of Atmospheric Water is Continually diluting		
to Violence	salt		
Sulfur mono-, di-, and tetra-chlorides	Antimony trichloride		
Sulfur trioxide	Ferric perchlorate		
	Mercuric nitrate		
Sulfuryl chloride	Sodium sulfide, nonanhydrate		
Thionyl chloride	Trichloroacetic acid		
Thiophosphoryl chloride	Zinc Chloride		
Produces Chlorine Spontaneously	Calf Dreaser riving		
Sulfuryl chloride	Self-Pressurizing:		
Phosphorus pentachloride	Chloroformate esters		
	Chromic acid (spent)		
Produces Chlorine Due to Water Absorption	Diethyl pyrocarbonate		
Calcium hypochlorite	Formic acid		
Calcium hypochionite	Methyl formate		
Produces Chlorine Due to Carbon Dioxide			
Absorption			
Calcium hypochlorite			
Sodium hypochlorite solution			
Methyl ethyl ketone peroxide in dimethyl			
Dimethyl phtalate			
Hydrogen peroxide solution			
Pyruvie acid			
Trichloromethyl carbonate			