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Model for the director and electric field in liquid crystal cells having twist
walls or disclination lines

G. Panasyuka) and D. W. Allender
Liquid Crystal Institute and Department of Physics, Kent State University, Kent, Ohio 44242

~Received 27 December 2001; accepted for publication 20 March 2002!

Two examples of the director structure and electric field in patterned electrode liquid crystal cells are
studied using a recently developed calculational model. First, a display cell that exhibits a
homeotropic to multidomainlike transition with twist wall structures has been considered for a liquid
crystal with positive dielectric anisotropy. The model elucidates the behavior of the electric field.
Calculations show good agreement between the model and direct computer solution of the Euler–
Lagrange equations, but the model is at least 30 times faster. Second, the possibility that a cell has
61/2 disclination lines instead of a wall defect is probed. A temperature dependent estimate for the
size of the defect core is given, and the total free energy of the cell with disclination lines was
calculated and compared with the corresponding value for the same cell with wall defect structure.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1477613#
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I. INTRODUCTION

For the last several years liquid crystal displays~LCDs!
have become increasingly used in laptop computers, TVs
monitors. The image quality and the resolution of LCDs ha
been improved. Most of the newly developed LCDs, w
wide viewing angle, good color characteristics and fast
sponse time, possess a multidimensional director distribu
which means that the directorn depends on two or thre
space coordinates unlike in the case of twisted nematic
plays. Among these new devices are a LCD which combi
the concept of in-plane switching~IPS! with vertical align-
ment ~VA !,1–5 a display associated with a homeotropic
multidomainlike ~HMD! transition,6,7 fringe-field switching
devices,8,9 and a liquid crystal~LC! p cell with patterned
electrodes.10 As LCDs become more sophisticated, accur
and effective LCD modeling methods are becoming incre
ingly important.

In earlier publications4,5 a model was developed to de
scribe properties of LC cells with wall defect layers wheren
lies in one plane and there is no twist deformation~see Fig.
1!. The purpose of this work is, first of all, to generalize t
model to describe a LC cell with a twist wall and, second,
modify the model to include the possibility of cells wit
61/2 disclination lines.

An example of a LC cell with twist wall defects is
HMD display ~see Fig. 2!. It has a three-dimensional~3D!
director n and electric fieldE. The electrodes and surfac
coating of the HMD display are prepared in such a way t
in the absence ofE the LC alignment for a nematogen wit
positive dielectric anisotropyea is homeotropic. Strong ho
meotropic anchoring occurs at the cell substrates. In Sec.
model is developed to describen andE for the HMD mode
for voltage differences,u, that are high enough that the tran
mittance of light is observable. In Sec. III a simplified b
still accurate way of calculating the LC alignment of a c
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with 61/2 disclination lines and its free energy will be d
scribed.

II. MODELING OF THE HMD LC CELL

As was shown in Ref. 7, the HMD LC cell possesses
following symmetries:~1! 2L periodicity along both thex
andy directions for any variables;~2! mirror symmetry with
respect to the vertical planes atx56L/2, 63L/2,..., andy
56L/2, 63L/2,...; ~3! ‘‘twisted symmetry,’’ where, for ex-
ample, F(x,y,z)5F(y,x,2z), and ~4! electric potential
that satisfies the relationF(x,y,z)52F(2x,2y,z). Due
to these symmetries, it is enough to consider only the volu
inside the right triangle prism with the triangleDOAB as its
horizontal cross section~see Fig. 2! and then extend the re
sults of calculation of the director and electric field to the r
of the cell using symmetry. As has already been noted,7 two
different defect structures are conceivable for the direc
configuration: one with a system of wall defects and t
other with disclination lines. For small voltagesu, a simple
estimate7 indicates the configuration with wall defects wi
occur. Also, the results of light transmittance measureme6

have been interpreted in terms of a system of wall defects
least for the most interesting range of display voltagesu
<20 V. Thus, for the HMD cell the director configuratio

FIG. 1. Schematic diagram of the 2D cell.
3 © 2002 American Institute of Physics

IP license or copyright, see http://jap.aip.org/jap/copyright.jsp



al
ne
e

c
ho

en

o

In
lc
-

E

ons,

d

e
a

d

ed

is

y

by
of

n-

the

-
h
not

s o

9604 J. Appl. Phys., Vol. 91, No. 12, 15 June 2002 G. Panasyuk and D. W. Allender
with wall defects is the most important to consider. W
defect layers lie approximately along vertical diagonal pla
like the UZ plane in Fig. 2 which is the center plane of th
defect. Along these wall defect layersE is approximately
perpendicular to directorn, the torque due to the electri
field is close to zero and the director remains close to
meotropic even in the presence ofE.

Taking into account these symmetries, the total free
ergy of the system can be written as

F5E drE
2d/2

d/2

dz~ f d1 f e!2
eg

8p

3E drS E
2`

2d/2

1E
d/2

` D dzE2, ~1!

where

f d5
K1

2
~¹"n!21

K2

2
@n•~¹Ãn!#21

K3

2
@n3~¹Ãn!#2,

~2!

and

f e52
ea

8p
~n"E!22

e'

8p
E2, ea5e i2e'.0. ~3!

Due to symmetry, the integration overr in the horizontal
plane can be restricted to triangleDOAB.

The main idea of the proposed model4 is to numerically
solve the dynamic equation11

g1] tn52dF/dn ~4!

using the exact expression for the free energy but an appr
mate expression for the electric fieldE found in this work.
Hereg1 is the rotational viscosity and flow is neglected.
contrast, previously used methods of direct computer ca
lation ~see, for example, Refs. 12–14! do not use an approxi
mate form for the electric field but instead solve“"D50 to
get the electric field after each director update, based on
~4!.

FIG. 2. Top view of the HMD cell. The electrode planes have coordinate
z56d/2. Planes of mirror symmetry are shown as dotted lines.
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A. Approximation of the electric field

To find a reasonable approximation forE, let us intro-
duce high voltageEh52¹Fh and low voltageEl52¹F l

asymptotics as the solutions of the corresponding equati

¹'
2Fh1]z

2Fh50, ~5!

¹'
2F l1~e i /e'!]z

2F l50, ~6!

with the conditionsFh,l(r )56u/2 on the electrodes an
Eh,l(r )→0 whenuzu→`. Equation~6! is the Maxwell equa-
tion “"D50 with n[ ẑ everywhere inside the cell. Here th
subscript ‘‘'’’ for a vector means its components are in
plane perpendicular to thez axis, specifically, ¹'5 x̂]x

1 ŷ]y . The solutionFh(r ) was obtained and it is describe
in detail in Ref. 7@where it was denotedF0(r )#. Similar to
Fh(r ), the solutionF l(r ) may be represented by a truncat
Fourier series and can be produced fromFh(r ) with the
following substitutions in the Fourier coefficients@see the
text between Eqs.~49! and ~50! in Ref. 7#:

Bpq→dpq
1 F21 ê

e i

eg
~ tanhdpq

1 1cothdpq
1 !G ,

Gmpq→ ê
e i

2eg
dpq

1 amq~ tanhdpq
1 2cothdpq

1 !,

where ê5(e' /e i)1/2, dpq
1 5pêd@(2p11)214q2#1/2/2L and

we took into account that the medium outside the LC slab
a uniform glass plate with a dielectric constanteg @see the
text after Eq. 60 in Ref. 7#. The low voltage potential in the
glass plates is determined by formula~40! in Ref. 7, but
FLC[F l inside the LC film is determined from Eq.~39! in
Ref. 7, wheredpq in this equation must be substituted b
dpq

1 .
As was shown before,7 for relatively high voltages it is

possible to provide a reasonable description of the cell
dividing it into two near-substrate layers with thicknesses
D1'D2'2j @j5(4pK13/ea)1/2 is the correlation length,
where K135(K11K3)/2# and a bulk region between them
whereE'Eh. On the other hand, in all the displays me
tioned in Sec. I d is much less thanL ~usually d/L<0.2!.
Thus, to estimate the influence of the substrate layers on
electric field, one can neglect¹' in the Euler–Lagrange
equations for the director and electric field. Neglecting¹' in
the Maxwell equation“3E50 shows that one can also ne
glect thez derivative ofE' . This means that small lengt
scale changes in the director field near a substrate do
produce the same significant changes inE' . In such a situ-
ation E''Eh even across a near-substrate layer.4 Omitting
¹' in the Maxwell equation“"D50, one can findEz from

“"D']zDz50. ~7!

Thus, in the first approximationE''E'
h , and, after integra-

tion Eq. ~7!, Ez can be presented as

Ez'@ezzmEzm
h 1ea~n'm•E'm

h nzm2n'•E'
h nz!#ezz

21, ~8!

whereezz5e'1eanz
2 and index ‘‘m’’ means thatz50 must

be taken in the corresponding value~z50 is the midpoint
between the substrates!.

f
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When u decreases, the bulk region shrinks and fina
disappears atu,u0 , whereu0 can be estimated from th
relation 4j5d. For the experimental set of HMD ce
parameters,6 u058 V ~dark state for this display observed6

for u,5 V!. Whenu,u0 , Ez deviates significantly fromEz
h

and formula~8! fails to describeEz properly for the impor-
tant region of smalluv u. The same arguments as those in R
4 provide us with the following expression forEz(u,v,z):

Ez'~ea /e i!n'•E'
h 1Ez

l , ~9!

whenuvu,d, whered is the largest value of thev coordinate
for which the approximate relationezz'e i is still satisfied
with about 10% accuracy. The value ofd is a function ofu
and the other cell parameters and is found in the cours
solving Eq. ~4!. For low voltages, whenu,u0 , d is rela-
tively large ~it may be comparable tol /2!, but whenu in-
creases,d decreases quickly and foru>10 V, d,j and Eq.
~8! is applicable for allv. It is worth mentioning that formu-
las ~8! and ~9! are a direct generalization of relations~24!
and ~26! in Ref. 4 obtained in the course of describing t
two-dimensional~2D! cell and can be produced from Eq
~24! and~26! in Ref. 4 by substitutingnxEx

h→n'E'
h . As was

shown in Refs. 4 and 5, for higher voltages, whenu.u0 , Ex
h

for the 2D cell must be also modified in the wall’s defe
region to take into account small length scale changes in
director field across the wall’s defect layer whenn changes
from homeotropic at the center of the defect to close to p
nar distribution outside. According to those director var
tions, the largest componentEx of the electric field which is
perpendicular to the wall’s defect layer, also changes sign
cantly, having a peak in the center of the wall defect la
~see Fig. 3!. On the other hand, as follows from the geome
of the HMD cell, the electric field componentEv perpendicu-
lar to the wall defect layer is negligible~unlike in the 2D
case!. The largest field componentEu is now along the wall-
defect layer. It causesn to twist in the wall layer,7 but Eu

itself does not show any peculiarities inside the layer in F
4. This means that one can neglect the influence of the
defect

FIG. 3. Ex(x,z5d/2) atu514 V in the 2D cell obtained from~a! the model,
~b! direct computer solution, and~c! Ex

h .
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layer onE in this case of the twist wall defect unlike in th
2D case wheren bends and splays across the wall defe
region.

However, it is important to take into account anoth
feature of the electric field. In the 2D case values ofuEh

2El u/uEhu are small: 0.025 inside the wall defect layer a
0.2–0.25 in the region close to electrode edges. In the H
case these values are about 0.1 and 0.6–0.7, respect
The simplest way to take this fact into account is to appro
mate the electric potentialF(r ) for any voltage by

F5aFh1~12a!F l , ~10!

where, in the simplest approximation,a is a parameter~a
does not depend onr !. It is clear thatF satisfies the bound
ary conditions of the electrodes and whenuzu→`. After sub-
stituting Eq.~10! into the free energyF, one can minimizeF
by choosinga as a solution to the equation]aF50. Using
Eqs. ~5! and ~6! for Fh,l , noticing thatFh2F l50 on the
electrodes ande i]zF

h,l5eg]zF
h,l on the rest of the LC–

glass interface, it is possible to exclude integrals over
glass substrates and finda5B/A, where

B5E drE
2d/2

d/2

dz@n"El~n"El2n"Eh!2Ez
l ~Ez

l 2Ez
h!#,

A5B1E drE
2d/2

d/2

dz@Eh~El2Eh!

2n"Eh~n"El2n"Eh!#.

Whenu→0,

n"E→Ez , B→0 and a→0.

On the other hand, ifu→`,

n"E→Eh,n"Eh~n"El2n"Eh!→Eh~El2Eh!,

A→B anda→1. Figures 5 and 6 display the voltage depe
dence ofa and thev dependence ofEu , respectively;u
5` corresponds toE5Eh.

FIG. 4. Eu dependence on thev coordinate at 14 V in the HMD cell calcu-
lated by the model and direct computer calculation for different values of
u coordinate~in mm!.
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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B. Boundary conditions for the director

Let us consider now the choice of boundary conditio
for Eq. ~4!. Because of strong homeotropic anchoring at b
substrates,n5 ẑ at z56d/2. The choice of boundary cond
tions along theUZ or VZ planes is not obvious. One ca
choose, of course, a larger volume for the director desc
tion, for example, a rectangular prism with the rectan
ABB1A1 of Fig. 2 as its horizontal cross section, and th
use mirror symmetry to derive appropriate conditions fon
along the vertical planes atx56L/2 and y56L/2. How-
ever, this would decrease the speed of the calculation dr
cally ~more than 10 times!. To find n in the smallest possible
region of the HMD cell~the triangle prism!, it is convenient
to describe its symmetries as follows. First of all, the sy
metry of the electric field can be represented in the follow
way:

E~r 8!5Rp
u E~r !, r 85Rp

u r ,
~11!

E~r 9!52Rp
v E~r !, r 95Rp

u r ,

wherer is an arbitrary point andRp
a is a rotation byp about

the a axis: a5u or v means a rotation around theU or V
axis of theUVZ coordinate system produced by rotating t

FIG. 5. Voltage dependence ofa.

FIG. 6. Shapes ofE(u50,v,z50) at different voltagesu for the HMD cell;
u5 infinity corresponds toEu

h , andu50 corresponds toEu
l .
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XYZsystem 45° around theZ axis counterclockwise~see Fig.
2!. The corresponding symmetry relations forn are

n~r 8!56Rp
u n~r !, r 85Rp

u r ,
~12!

n~r 9!526Rp
v n~r !, r 95Rp

u r ,

and they differ from Eqs.~11! due to uncertainty in the signs
because ofn→2n equivalence. To take into account a
those possibilities, a tensor orQ representation for the Fran
free energy density,14–16 f 5 f d1 f e , inside the LC cell with

f d5 1
12 ~K32K113K2!s0

22G1
~2!1 1

2 ~K12K2!s0
22G2

~2!

1 1
4 ~K32K1!s0

23G6
~3! , ~13!

f e52
ea

8ps0
EiEkQik2

e'

8p
E2, ~14!

may be used. HereG1
(2)5Qik, lQik, l , G2

(2)5Qik,kQil , l , G6
(3)

5QikQlm, iQlm,k , Qik, l5]xl
Qik and

Qik[Qik
Frank5s0~nink2 1

3d ik!. ~15!

Heres0 is a scalar order parameter which is assumed to
spatially constant but to vary with the temperature in t
nematic phase.17 In this representation, the boundary cond
tions forQik are completely determined. Along theUZ plane

Qik~r 8!5Rp
u Qik~r !, if ik5uu, vv, vz, zz,

~16!
Qik~r 8!52Rp

u Qik~r !, for ik5uv, uz,

and along theVZ plane

Qik~r 9!5Rp
v Qik~r !, for ik5uu, uz, vv, zz,

~17!
Qik~r 9!52Rp

v Qik~r !, for ik5uv, vz.

The sameQ representation of the Frank free energy c
be applied, of course, to the 2D cell which combines
concept of IPS with VA~see Fig. 1!. The symmetry for the
electric field and director for that cell may be described
follows:

E~2x,z!52Rp
z E~x,z!,

n~2x,z!56Rp
z n~x,z!, ~18!

whereRp
z is the rotation byp around thez axis. Again, using

the tensor representation, Eqs.~13!–~15!, the boundary con-
ditions forQik(x,z) along thex50 line can be established a

Qii ~2x,z!5Qii ~x,z! Qxz~2x,z!52Qxz~x,z!, ~19!

wherei i 5xx or zz.
Application of theQ representation to the HMD mode

with the boundary conditions, Eqs.~16!–~17!, produces di-
rector configurations with wall defects at least foru,30 V,
if an initial director distribution along theUZ plane does not
deviate significantly from homeotropic. As our calculatio
show, in all such situations the resulting director and elec
field distributions coincide with the corresponding distrib
tions which can be found if one uses the more comm
vector representation, Eqs.~1!–~3!, and the following bound-
ary conditions for the director:
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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n~r 8!52Rp
u n~r !, r 85Rp

u r ,
~20!

n~r 9!52Rp
v n~r !, r 95Rp

u r ,

along theUZ and VZ planes. Thus, for the voltage rang
most relevant for display applications, one can use the s
pler and about 1.7 times faster vector representation for
rector calculation inside the triangular prism volume and
boundary conditions, Eqs.~20!.

Exactly the same situation occurs for the 2D model. A
plication of the tensor representation with boundary con
tions, Eqs.~19!, along thez axis shows that the resultin
director distributions correspond to a wall defect structure
an initial director distribution deviates not very far from h
meotropic along thex50 line. In such a situation, again, th
vector representation~or even u representation, when on
choosesn5 x̂ sinu2ẑcosu! with the boundary condition

n~2x,z!5Rp
z n~x,z! ~21!

along thez axis may be applied, with the same results.4,5

However, in both HMD and 2D cases, in principle, a
alternative director configuration with61/2 disclination
lines is possible. Using the 2D cell as an example, LC ali
ment and the corresponding free energy for the director c
figuration with disclination lines will be calculated and an
lyzed in detail in Sec. II C.

C. Results of the director calculations for the HMD
cell

The results of the director calculation for the HMD ce
are illustrated in Figs. 7–9. We have used the set of exp
mental cell parameters from Ref. 6. To compare this mo
with other methods of director calculation, the usual rela
ation method for computing the director and electric fie
was also developed for this 3D LC cell. Figures 7–9 sh
nu(u,v,z50) as a function ofv for different values of theu
coordinate and different voltages. For all these figures
calculated director components in two different ways: o
model ~taking into account the corrections described abo!
and direct computer calculation~relaxation method!. The fig-

FIG. 7. nu(u,v,z50) in the HMD cell at 7 V, calculated by the model an
direct computer calculation for different values of theu coordinate~in mm!.
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ures show good agreement between the model and d
computer calculation. The difference between the two res
is usually within 3%–4% for all coordinates.

It is clear that the model must be faster than direct co
puter calculation for the following reason. As follows from
the solutionsEh,l outside the LC cell,7 the decay of the larg-
est~lowest! harmonics of the electric field is determined by
factor exp(2puzu/2L). Because d/L,0.2, it needs aboutL/d
more mesh points in thez direction outside the cell than
inside it, which increases the calculation time significantly18

However, the gain in calculation speedM ~how much faster
the model is compared to direct computer calculation! de-
pends on several factors. It depends on the dimensionalit
n and the type of director representation~tensor, vector oru
representation!. Our calculation shows thatM depends also
on the method of calculation applied during simulations~for
example, the method of simultaneous substitutions or
method of successive substitutions18!.

In the case of the 2D model wheren lies in one plane,u
representation was used for both the model and direct c

FIG. 8. nu(u,v,z50) in the HMD cell at 11 V calculated by the model an
direct computer calculation for different values of theu coordinate~in mm!.

FIG. 9. nu(u,v,z50) in the HMD cell at 16 V calculated by the model an
direct computer calculation for different values of theu coordinate~in mm!.
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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puter calculation. In this situationM is about 30–50~M is
larger for higher voltages! when the method of simultaneou
substitutions is applied. Use of this method is appropriate
investigate the real~rotational! dynamics ofn toward the
equilibrium configuration. However, calculations show th
if one switches to the faster method of successive subs
tions with an appropriate choice18 of the overrelaxation con
stant,v ~simply to find the final director distribution!, direct
computer calculation becomes about two times faster t
simultaneous substitution. However the model improv
even more andM is in the range of 130–300~in this caseM
is smaller for higheru!.

In the case of the HMD cell in the vector representat
and using the method of simultaneous substitutions,
model givesM;25– 40. After switching to the method o
successive substitution with a properv, direct computer cal-
culation becomes four to six times faster, a larger increas
speed than in the 2D case. But the model increases its ca
lational speed about 8–12 times, leading toM;60– 80 for
all voltages~M is slightly higher for higheru unlike in the
2D case!.

III. DETERMINING LC ALIGNMENT IN A CELL WITH
Á1Õ2 DISCLINATION LINES

An interesting and important example of application
the model is to calculate the LC alignment for a possi
configuration with two61/2 disclination lines and its free
energyF lines using the 2D cell in Refs. 1–5 as an examp
Figure 10~a! shows schematically the director distribution
the region along the x50 plane with disclination lines tha
are perpendicular to thexz plane at pointsz5z1 and z5d
2z1 with distancez1 to be found and Fig. 10~b! illustrates
the director pattern in the vicinity of the11/2 line defect.
Frank theory~either in vector or in tensor representatio!
cannot properly describe the director configuration inside
defect’s core region. In particular, the elastic Frank free
ergy diverges11 if one chooses a finer mesh.

To calculate the LC alignment andF lines properly,
Landau–de Gennes theory with free energy density,

FIG. 10. ~a! Director pattern in the region along the linex50 in the case of
61/2 disclination lines;~b! schematic distribution ofn in thexzplane in the
vicinity of the 1/2 defect line with its center at pointO.
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f L5 1
2L1G1

~2!1 1
2L2G2

~2!1Fb~Q!2Fb~QF!2CEiEkQik ,
~22!

may be used inside regionABCDC1B1 in Fig. 10~b!. Here
Q[Qik is a symmetric and traceless tensor order parame
G1

(2) and G2
(2) are determined by the expressions followin

Eq. ~13!, and

Fb~Q!5 1
2aTrQ22bTrQ31g~TrQ2!2. ~23!

In Eqs. ~22! and ~23! a5a(T2T* ), a, b, g, L1 , L2 and C
are constants andT* is the lowest temperature to which on
could supercool the isotropic phase. Typical experimen
values ofa, b, g andT* are shown in Refs. 19–21. Outsid
the defect coreQ must coincide with the uniaxial Fran
form, Eq. ~15!, which means thatF(Q)2F(QF) disappears
far from the core region. The nematic scalar order param
far from the defect core,s0 , can be found from the equatio
]s0

Fb(QF)50. The result is

s05
3b

16g F11S 12
32ag

3b2 D 1/2G . ~24!

As is known, this form of Landau–de Gennes free ene
density leads toK15K35(2L11L2)s0

2, and we approxi-
mated these values by (K11K3)/2 with experimental values6

of K1 andK3 during calculation of the LC alignment insid
the core. Comparison of Eqs.~13!, ~14! and ~22! shows that
in such an approximationL1 , L2 and C may be chosen as
L15K2 /(2s0

2), L25(K12K2)/s0
2 andC5ea /(8ps0).

Outside the defect core the Frank theory is corre
Moreover, because the director configuration with disclin
tion lines is more likely to occur at high voltages for whic
our model is especially accurate,4,5 the model approach ca
be used to calculate the director configuration outside
defect core.

To create the resulting director distribution shown in F
10, a particular initial director distribution must be chos
for the 2D cell under consideration. A key feature of t
initial alignment is that the anglef init(0,z) betweenn and ẑ
along the x50 line must be nonzero, namely,f init(0,z)
>f* 'p/4 whenz1<z<d2z1 , andf init(0,z),f* outside
this interval@f init(0,0)5f init(0,d)50 for this cell#.

Landau–de Gennes theory was applied in Ref. 22 in
vicinity of the nematic–isotropic transition, whenuT2T* u
;1 K. The important result that was found is that the core
biaxial23 and does not consist of isotropic fluid, as was p
viously assumed.24 This result was also confirmed by Mont
Carlo simulation,25 where molecules were represented
hard spherocylinders with aspect ratios less than or equa
8. However, the description of LC alignment in Ref. 22 w
given for the case of zero external field, and, thus, did
consider the LC alignment outside the defect’s core. T
purpose of the present investigation is to provide a desc
tion of LC alignment throughout the whole cell~using Frank
theory outside the core!, and properly estimateF lines for char-
acteristic temperaturesT of LC display applications, when
T2T* ,210 K. First of all, it is convenient to rewritef L in
dimensionless variables, measuring space coordinate
units of (L1g/b2)1/2 and FL in units of b2/g. The free en-
ergy density will have the same form as Eq.~22! but with
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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the following substitutions: L1→1, L2→C252(K1

2K2)/K2 , a→â5ag/b2, b→b̂5g/b, g→ĝ5b̂2, and
C→Ĉ5eag/(8ps0b2). ChoosingQxx , Qxy , Qxz , Qyz and
Qzz as independent variables, one can write the Eul
Lagrange equations in terms of those variables and t
solve them numerically using the relaxation method18 and
boundary conditions to provide the correct asymptotic
havior at large distancer from the core. These boundar
conditions will be discussed later after we describe
asymptotic behavior ofQik . For this particular LC cell it is
possible to speed up calculation ofQik by solving the Euler–
Lagrange equations only on the right halfABCD ~see Fig.
10! of the whole defect region using the symmetry of the c
which gives us the following relations:Qii (2dr,z)
5Qii (dr,z), where i 5x, z, and Qxy(2dr,z)5Qxy(dr,z),
Qxz(2dr,z)52Qxz(dr,z), Qyz(2dr,z)52Qyz(dr,z)
@see also Eq.~19!#. Here dr is a mesh step inside the co
region which was chosen to be the same for bothx and z
directions. To obtain the correct boundary conditions
solving the Euler–Lagrange equations, we assume tha
from the centerO of the core region, in particular, along it
border ofABCD, Qik has its Frank form,

~s01y!~nink2 1
3d ik!, ~25!

wherey(r ) is small with respect tos0 andnx,z are close to
values ofnx5sin(u/2), andnz52cos(u/2) in cylindrical co-
ordinatesr, andu with the center atO. Like in Ref. 4, we
represent the directorn for x>0 ~and outside the core! as
n5 x̂ sinf2ẑcosf, wheref is the angle betweenn and ẑ.

In order to describe the asymptotic behavior ofQik , it is
convenient to rewritef L in cylindrical coordinates in the
asymptotic region, where the dimensionless coordinater is
large andQik has its Frank form, Eq.~25!. The resulting
Euler–Lagrange equation fory(r ) can be written as

L̂y2N0
2ry5

1

r
~ 1

2b cosu1d!s0 . ~26!

In this equationL̂y5L̂1y1L̂2y with

L̂1y[~11b cosu!~yr1yrr r !22b sinuyur

1
1

r
~12b cosu!yuu , ~27!

L̂2y[bS 1

r
sinuyu2cosuyr D , ~28!

and

b5
3C2

C12
, N0

25
12uau132ĝs0

2

C12
, d5

9~11C2/2!

2C12
, ~29!

where C1251215C2 , yr5] ry, yu5]uy, yur5]ur
2 y, yuu

5]uu
2 y and yrr 5] rr

2 y. A solution to Eq.~26! is given byy
5y01y1 , where y0 is a general solution of the homoge
neous equation,

L̂y02N0
2ry050, ~30!

and y1 is a particular solution of the inhomogeneous eq
tion,
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L̂y12N0
2ry15

1

r S 1

2
b cosu1d D s0 . ~31!

If b50, which corresponds to the one constant approxim
tion (K15K25K3), the u dependence disappears in Eq
~26!–~31!, and Eq.~30! reduces to the modified Bessel equ
tion,

y0r1ry0rr 2N0
2ry050. ~32!

One of the two independent solutions of Eq.~32!, K0(N0r )
@whereK0(z) is the modified Bessel function of zero order#,
decreases exponentially with asymptotic behavior,

y0'
c

Ar
exp~2N0r !, c5const, ~33!

at r→`. In a more realistic situation in whichbÞ0, the
decreasing solution of Eq.~30! picks upu dependence, and
the asymptotic form is

y0~r ,u!'
c

Ar
exp@2N~u!r #, c5const. ~34!

Substituting Eq.~34! into Eq. ~30! and keeping the leading
terms for larger, one comes up with the following equatio
for N(u):

~11b cosu!N222b sinNNu1~12b cosu!Nu
25N0

2,
~35!

whereNu[]uN(u). The desired solution of Eq.~35! must
also satisfy the following conditions:N(u12p)5N(u),
N(u).0 for all u. The exact solution is

N~u!5N0~p1q cosu!, ~36!

where p5@(11b)1/22(12b)1/2#/2 and q5@(11b)1/21(1
2b)1/2#/2. For experimental values3,4 K151.32, K250.65
and K351.83 ~in units of 1026 dyne!, C252.89 and b
50.33,1, which givesp51.04 andq520.17.

The particular solution of inhomogeneous Eq.~31! can
easily be found as a series inr 22: y1(r ,u)5y1

(0)(r ,u)
1y1

(1)(r ,u)1,..., where

y1
~0!52

1

N0
2r 2 S 1

2
b cosu1d D , ~37!

y1
~ i !5

1

N0
2r

L̂y1

~ i 21!}
1

r 2~ i 11! , i 51,2,...,.

A characteristic ratiouy1
(1)/y1

(0)u can be approximated a
4/(N0r )2 and is relatively small forr>10, taking into ac-
count that usuallyN0 is between 1 and 2.

Our estimates and calculations show that forr>10 the
exponential~homogeneous! part y0 of the complete solution
y5y01y1 becomes negligible with respect toy1 , which
means that the final asymptotic behavior for larger can be
approximated byy1'y1

(0) . Taking into account the approxi
mate form of Eq.~25! for Qik and the asymptotic behavior o
Eq. ~37! of y(r ,u), one can write that, at larger, ] ry
'2(2/r )y[2(2/r )(s2s0), or, multiplying this relation by
the factor (nink2d ik/3), the following relation betweenQik

and its radial derivative at somer 5r c can be written:
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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] rQik52
2

r c
FQik2s0S nink2

1

3
d ikD G . ~38!

This relation was used as the boundary condition in
course of solving the Euler–Lagrange equations inside
gionABCDandr c5r c(u) describes the contourABCDwhen
u varies from 0 top @r c(0) corresponds toA#.

Let us now estimater c(p/2)[dx, a characteristic di-
mension of the defect core. Wheny is nonzero in the vicinity
of contour ABCD, Frank coefficientsKi acquire additional
factors of orders/s0 , where s/s0511y/s0 in the region
adjacent to the defect core. If we assume thatuy/s0u<Ds, a
small number, it will also affect the director distribution
that adjacent region with the same order of magnitudeDs.
However, our calculations show that if the director distrib
tion alongABCD changes by 0.1%–1%, the entire free e
ergy changes only by 0.01% or less, which means that
impact of this initial director deviation also decreases aw
from the defect region. Taking this information into accou
we chooseDs50.001 which gives the following estimate:

dx5
1

N0
S d

DsD
1/2

~39!

~we neglected 0.5b cosu with respect tod for simplicity!. To
estimate this size in real units, one has to multiply Eq.~39!
by the scaling factor (L1g/b2)1/2. Using Eqs.~24!, ~29! and
~39!, one finds that, for example, atDT5240 K, dx512, or,
in unscaled units of length, 100 Å. Thus, for the temperat
range of270 K<DT<230 K, which is typical for display
applications, dx;100 Å. It is worth mentioning that there i
always an ‘‘inner’’ core~with radius of about dx/3! where
Qik deviates significantly from its Frank form.

Because the electric correlation lengthj is more than
~0.2–0.25! mm for the most relevant voltage range ofu
,100 V, the length scale of varying LC alignment inside t
core region is about 100 times smaller than outside it. In
other words, the characteristic~elastic! free energy density
inside the core which is of orderK/(dx)2, is three to four
orders of magnitude larger than the characteristic free en
densityK/j2}eaE2/4p created by applying electric fieldE.
This comparison shows that one can determine LC alignm
inside the core region of a disclination line~described by
values ofQik! independently and prior to Frank calculatio
of the director outside the core region. The accuracy of v
ues ofE inside the core does not affect the accuracy of t
calculation significantly. By minimizing the free energy, E
~22!, with respect toQik , using Eq.~25! and neglectingy
along the border ofABCD, one can determine director ang
u along this border, particular by at pointsB andC, from

u5arcsin~Qxx /s011/3!1/2. ~40!

We found that values off at those points differ by about 1%
from the valuesf5u/2 ~22.5° and 67.5° at pointsB andC,
respectively!. It is worth mentioning that not taking into ac
count Landau–de Gennes theory inside the core region,
instead using only the Frank theory everywhere inside
LC cell, would give incorrect values of the director at least
the region adjacent to the defect’s core. Our calculati
show, for example, that the values off at pointsB and C
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obtained using the Frank free energy everywhere inside
LC cell differ by 20%–30% from the Landau–de Genn
values.

Because the shape of the defect core is roughly a ci
~see also Ref. 22! and due to the symmetry of this particula
cell, we used mesh step dz52dx along the region adjacent t
thex50 line. A variable mesh with an increase in mesh s
in thex direction was used to expedite director calculation
such a way that at a distance ofDx'2j from the core region
in the x direction an approximate relation of dx'2dz is sat-
isfied. This is reasonable, because away from the defect
n varies smoothly. Inside the core region the mesh step
both the x and z directions was chosen to be dr 5dx/n,
wheren520. Increasingn several times does not affect th
results appreciably.

Calculations ofQik inside the core show that the beha
ior of its eigenvalues forDT<210 K is qualitatively the
same as forDT'21 K, which was shown in Ref. 22. The
region where those eigenvalues and free energy densitf L

differ significantly from their asymptotic values, howeve
shrinks when the temperature decreases in accordance
our estimate, Eq.~39!, and with Eq.~24!. Figure 11 illus-
trates a comparison between total free energies of the d
tor configurations with a wall defect structure (Fwall) and
with two disclination lines (F lines). As is seen, the critica
voltage u* , at which this difference changes sign, is es
mated to be about 24–25 V. ForDT,230 K the relative
difference (Fwall2F lines)/Fwall does not depend significantl
on the temperature, which is clear from Fig. 11. We have a
found that the total free energyDF lines inside the defect re-
gion depends very weakly on parametersa, b and g of
Landau–de Gennes theory. In particular, independe
changingb andg by a factor of 2 produces only about a 5
change inDF lines, and a change ina by a factor of 2 affects
DF lines less than 1%. Because the ratio ofDF lines/F lines itself
is small~about 0.06 atu515 V and decreases inversely pr
portional tou2!, one can conclude that reasonable change
a, b andg cannot significantly alter the curves in Fig. 11, n
in particular,u* . Because those parameters sometimes
not known exactly ~unlike Frank constants!, this obser-

FIG. 11. Voltage dependence of (Fwall2F lines)/uFwallu for different tempera-
ture differencesDT5T2T* . DT5 ~a! 210; ~b! 240; ~c! 270 K.
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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vation makes the results of the estimation ofu* more reli-
able even taking into account that Landau–de Gennes th
becomes only qualitatively correct for such small tempe
tures.

As was mentioned earlier@see the text that follows Eq
~24!#, the Landau–de Gennes free energy density@Eq. ~22!#
leads toK15K3 , which is inconsistent with experimenta
observations. As was shown in Ref. 15, including the thi
order termL3G6

(3) , whereL35(K32K1)/4s0
3, in the elastic

free energy removes this degeneracy and reproduces th
perimentally observedT dependence of the Franck elas
constants~at least for one LC material, PAA!. Including the
L3G6

(3) term does not qualitatively change our calculation
scheme, but it does produce the following chang
in Eqs. ~26!–~37!: b→b353(C212C3s0)/C123, N0

2→N03
2

5(12uau132ĝs0
2)/C123, d→d35@(9/2)(11C2/21C3s0/6)

2(9/4)C3s0 cosu#/C123, whereC12351215C212C3s0 and
C3s05(K32K1)/K2 . The estimate for dx @Eq. ~39!# keeps
the same form with the changed→d15(9/2)(11C2/2
1C3s0/6)/C123. The solution of the Euler–Lagrange equ
tions for Qik is qualitatively the same. These modification
however, produce no visible changes in Fig. 11.

All calculations inside the defect core reported he
~e.g., the total free energy! were made for the 2D cell.1–5

However, this way of determining the LC alignment in th
core region can be applied to other cells with disclinat
lines such as ap cell10 with a 2D director. If there is no
symmetry~only periodicity in one direction!, like in the case
of a p cell, where the pretilt angle at the substrates diff
from 0 andp, one has to solve the Euler–Lagrange equati
for Qik in the whole defect region ofABCDC1B1 using the
same boundary conditions along its border. In a more co
plicated 3D cell~like HMD mode!, this method of determin-
ing the LC alignment inside a topological defect may be u
with small modifications. In this case a disclination line
not, generally, a straight line~see, for example, Ref. 7!. Con-
ditions along the line, such as the electric field, may v
from point to point. However, because the core region
essentially two dimensional~space derivatives along the lin
can be neglected!, it is possible to choose a local 2D coord
nate systemxzwith its origin in the center of the core and th
xz plane perpendicular to the disclination line at any po
along the line. Then, using this coordinate system, one
determine the LC alignment inside the core and along
border with the outside Frank region@particularly at points
like B andD in Fig. 10~b!# in the manner described abov
Because accurate values ofE are not important in those ca
culations, the result will be the same at any other point alo
the disclination line; in particular, one can choose core s
dx from Eq. ~39!. Using relation~40! as the boundary con
ditions for Eq.~4!, it is possible to completely determinen in
the rest of the LC cell outside the disclination line. To loc
ize the disclination line, it is convenient to first make 100
200 iterations of the dynamic equation in the tensor rep
sentation using only Frank free energy. After that t
coordinates of a disclination line are known. Then it is po
sible to determine the LC alignment inside the topologi
defect, as has been described here. Finally, knowing the
der values ofn, one can complete iterative solution of th
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dynamic equation in the Frank region outside the defect
ing the director distribution obtained after 100–200 iteratio
as the initial distribution. Of course, it is possible to u
direct computer calculation~which includes solving the
equation“"D50! to determinen in the Frank region. How-
ever, it will slow down the calculational speed about 50-
100-fold as was already mentioned.

As one can see from Fig. 11, the defect structure w
disclination lines for the 2D cell1–5 becomes preferable fo
u.25 V. However, as was already mentioned, this final
rector distribution is only possible if anglef init(0,z) of the
initial director alignment is large enough. On the other ha
application of theQ representation of the Frank free ener
with boundary conditions~19! shows, in agreement with
experiments,3 that only the wall defect structure is realize
at least foru<60 V, if the amplitude off init along thez axis
is small. A possible explanation of this result is as follow
Let us suppose that there is a fluctuation inn with a charac-
teristic size ofa0[dx/3;50 Å and angle of deviation off
;0.1,p/4 from n52 ẑ along thez axis. This produces an
increase in the free energy of orderK(f/a0)2 ~whereK is a
Frank constant!, which is more than an order of magnitud
larger than the electric energy density even atu;100 V.
This means that the electric force is negligible with resp
to the elastic force and the latter quickly suppresses s
fluctuations.

IV. CONCLUSIONS

A simplified model was constructed to describe the
rector and electric field configurations in a multidimension
LC cell with a twist wall defect. This result is an extension
the description of a LC cell that has a bend and splay w
defect with the director lying in one plane. The simplifie
model provides an alternative to the traditional method
direct computer solution of Euler–Lagrange equations
the director and electric field in analyzing the behavior
liquid crystal cells. The model is applied to describe a 3
director in a LC cell which exhibits a homeotropic to mult
domainlike transition. The calculations show good agr
ment between the model and direct computer calculation
the director. However, the model is much faster. In the c
of using the method of successive displacement with an
propriate choice of overrelaxation constant for both t
model and direct computer calculation the model is ab
130–300 times faster in the 2D case and 60–80 times fa
in the HMD cell.

An approximate but still accurate method of treating
LC cell with 61/2 disclination lines using Landau–d
Gennes theory inside the disclination core region was de
oped. It was shown that deviation of the tensor order para
eter from its Frank form far from the core center decrease
1/r 2, where r is the distance from the center, and has a
muthal dependence. A temperature dependent estimate
the size of the defect core was found. The free energy o
cell with disclination lines was calculated and compared w
the corresponding value for the same cell with a wall def
structure. For typical values of parameters of Landau–
Gennes theory, the director structure with disclination lin
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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becomes preferable foru.24– 25 V. However, the role o
cell symmetry may be important in that the phase transit
into the energetically preferred state may not occur even
reasonably high voltages, and the system can be trapped
metastable state.
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