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A B S T R A C T

The Common Core State Standards in Mathematics recommends that children should use visual models to re-
present fraction operations, such as fraction division. However, there is little experimental research on which
visual models are the most effective for helping children to accurately solve and conceptualize these operations.
In the current study, 123 fifth and sixth grade students solved fraction division problems in one of four visual
model conditions: number lines, circular area models, rectangular area models, or no visual model at all.
Children who solved the problems accompanied by a number line were more accurate and showed evidence of
consistently producing sound conceptual models across the majority of problems than did children who com-
pleted problems with either area model or no visual model at all. These findings are particularly striking given
that children have experienced partitioning area models into equal shares as early as first grade, thus circles and
rectangles were likely familiar to children. The number line advantage may stem from the fact that they afford
the ability to represent both operand magnitudes in relation to one another and relative to a common endpoint.
Future work should investigate the optimal order that instructors should introduce various visual models to
promote children’s representational fluency across number lines and area models.

1. Introduction

Reasoning about fraction operations is a critical aspect in the de-
velopment of children’s deep understanding of mathematics. The
National Mathematics Advisory Panel (NMAP, 2008) considers under-
standing fractions to be foundational for algebra (p. xviii). Empirically,
children’s understanding of fractions predicts later mathematics
achievement and success in algebra (e.g., Bailey, Hoard, Nugent, &
Geary, 2012; Siegler et al., 2012). However, despite the importance of
children’s understanding of fraction operations, this facet of early and
middle mathematics is notoriously difficult for children (e.g., Mack,
1990, 1995, 2001; Siegler, Thompson, & Schneider, 2011) and adults
(e.g., Ball, 1990; Luo, Lo, & Leu, 2011; Ma, 1999). Even though fraction
learning begins early in first grade, many students continue to struggle
to accurately represent and perform fraction operations (Lortie-
Forgues, Tian, & Siegler, 2015; Sidney & Alibali, 2015, 2017; Siegler &
Pyke, 2013; Siegler et al., 2011).

One common way of supporting children’s understanding of chal-
lenging fraction concepts is by using visual models, and other external
representations, during instruction and problem-solving activities.

Reflecting this common practice, the IES Practice Guide for Developing
Effective Fraction Instruction for Kindergarten through 8th Grade
(Siegler, Carpenter, Fennell, Geary, Lewis, Okamoto, & Wray, 2010)
directly recommends that instructors use visual models to engage stu-
dents in sense-making activities and to ground their understanding of
fraction concepts and procedures. According to the Common Core
Standards Writing Team (2013), fractions should be first introduced
with visual models in first and second grade under the Geometry strand
(e.g., partitioning circles and rectangles into two, three, and four equal
shares; 1.G.A.3; 2.G.A.3). The number line is introduced in third grade,
when students use partitioning to place fractions on the line. Fourth and
fifth graders should learn about multiplication (4.NF.B.4, 5.NF.B.4,
5.NF.B.5, 5.NF.B.6) and division (5.NF.B.3, 5.NF.B.7) with fractions
with reference to visual models. Many research-based and empirically-
tested effective fraction interventions, such as the Rational Number
Project Curriculum (Cramer, Behr, Post, & Lesh, 1997; Cramer, Post, &
del Mas, 2002) and several others (e.g., Fazio, Kennedy, & Siegler,
2016; Fuchs et al., 2013; Kellman et al., 2008; Moss & Case, 1999; Rau,
Aleven, Rummel, & Pardos, 2014), include visual models as key com-
ponents. As this body of research and practice recommendations
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demonstrates, there is a great deal of variability in how and which vi-
sual models are used, with some interventions (e.g., Rau et al., 2014)
including multiple types of visual models, raising the question of
whether some types of visual models support children’s fraction rea-
soning better than others.

1.1. Visual models for fractions

In this study, we examine two types of visual models for re-
presenting fraction concepts: area models and linear models. Area
models are visual models that represent fractions as parts of whole
shapes such as circles or rectangles. Typically, whole shapes are parti-
tioned into equal parts, and fraction denominators are represented by
the total number of equal parts in each whole shape and fraction nu-
merators are represented by the total number of shaded parts. Area
models are quite common; recent empirical studies conducted on chil-
dren’s and adults’ reasoning with complex elementary fraction multi-
plication and division tasks demonstrate a preponderance of area
models during instruction (e.g., Baek et al., 2017; Speiser & Walter,
2015; Webel & DeLeeuw, 2016). These types of models are thought to
emphasize students’ part-whole conceptions of fractions (e.g., Kieren,
1976; Wu, 2011), and can successfully support children’s visual re-
presentation of fractions and understanding the role of common de-
nominators in fraction addition and subtraction (Cramer, Wyberg, &
Leavitt, 2008).

Despite their common use, there are many possible limitations of
using area models to reason about fraction concepts (e.g., Common
Core Standards Writing Team, 2013; Kieren, 1976; Moss & Case, 1999;
National Research Council, 2005; Parker & Baldridge, 2004; Wu, 2011).
First, given the discrete nature of area models, especially circular area
models in which whole units are represented discontinuously by in-
dividual shapes, they may prevent children’s conceptualization of
fractions as a measurement. As we discuss in a later section, this may be
particularly detrimental for using area models to visually represent
certain fraction arithmetic concepts. Second, when representing com-
plex relationships on an area model from a measurement standpoint,
fractions and, say, their products refer to different units (i.e., lengths
and areas), and, consequently, it is difficult to ascribe meaning to ex-
pressions such as × +

1
2

1
4

2
3 . Third, given their discrete nature, area

models may pose challenges for representing fractions greater than 1, as
these representations would necessarily span multiple, and in the case
of circular area models, disconnected, shapes. Fourth, area models may
be less effective because their part-whole nature may disrupt children’s
ability to represent two operands on the same visual diagram (e.g.,
representing 2/3 on circles that have already been partitioned into
sixths). Finally, they may be less likely to afford representing each
operand in relation to 0 as a common anchor point, preventing children
from directly comparing relative magnitudes of operands.

In contrast to area models, linear models, such as the number line,
are thought to highlight a measurement model of fractions (Kieren,
1976; Moss & Case, 1999) and readily allow children to reason about
the magnitude of fractions relative to other rational numbers (Siegler
et al., 2011). In particular, fraction multiplication from a measurement
perspective provides a more appropriate definition of multiplication (as
scaling) that applies to all rational numbers, overcoming conceptual
limitations associated with area models (e.g., repeated addition). Fur-
thermore, number line models support awareness of units, which is
central to the development of deep understanding of fraction opera-
tions. Students learn that adding and subtracting fractions involving
like and unlike denominators require the same initial process of con-
structing common units, and that multiplying and dividing fractions
generate compound units. Siegler et al. (2011) have argued that
number line models are a critically important tool for reasoning about
fractions, and more generally, all rational numbers. Indeed, in studies of
children’s whole number magnitude reasoning, children are better able
to reason about whole number arithmetic when addend magnitudes

were represented on number lines (e.g., Booth & Siegler, 2008). Simi-
larly, learning about fractions using number lines can result in better
understanding of the relative magnitude of fractions (e.g., Fazio et al.,
2016) and children who can place fractions on number lines with better
precision are also more likely to have better fraction arithmetic skills
(Siegler & Pyke, 2013; Siegler et al., 2011). Given this empirical evi-
dence suggesting that number lines can be an effective external visual
representation for reasoning about and understanding fraction magni-
tudes, and relative magnitudes of fractions, the IES Practice Guide
specifically recommends using number line models as a central re-
presentational tool.

1.2. Comparing visual models

Despite these theoretical arguments, research, and recommenda-
tions pointing towards the utility of number lines as an effective visual
model for understanding fractions, and the many potential pitfalls of
area models, recent studies with elementary students remain incon-
clusive about the most optimal visual model for learning fraction con-
cepts (Cramer & Wyburg, 2009; Wilkerson et al., 2015). Few studies
have directly compared the relative benefits and limitations of using
these two types of visual models during learning or problem solving.
Here, we argue that area models and linear models, specifically number
line models, likely do have differential effects on children’s fraction
reasoning due to different affordances of these representations.

Children’s behavior is inherently variable (Siegler, 1996). Problems
with different features often afford different strategies; for example,
empirical research clearly demonstrates that specific features of frac-
tion tasks contribute to intraindividual variability in students’ ap-
proaches (e.g., Alibali & Sidney, 2015; Fazio, DeWolf, & Siegler, 2016;
Schneider & Siegler, 2010). Visual models can highlight different as-
pects of complex conceptual relationships (see Rau & Matthews, 2017
for a discussion, Ainsworth, 2006), and even minor perceptual differ-
ences in visual models for fractions may elicit slightly different ways of
reasoning, and approaches to problem solving, that are more or less
accurate. For example, in one study of young children’s proportional
reasoning, Boyer, Levine, and Huttenlocher (2008) compared children’s
ability to match proportions across visual representations in which
proportions were represented with two differently-colored continuous
areas or partitioned areas. When visual representations of mixtures
included discrete partitions, these visuals elicited counting-based stra-
tegies, disrupting children’s ability to match based on overall propor-
tion. Thus, this relatively minor perceptual difference, including par-
titions or not, shaped children’s strategies for reasoning in this task.

Two recent experimental studies (Hamdan & Gunderson, 2017;
Kaminski, 2018) have compared children’s learning about fraction
magnitudes and fraction addition using circular area models, linear
models (e.g., number lines), or no model at all. In line with what several
researchers have proposed (e.g., Moss & Case, 1999; Siegler et al.,
2011), Hamdan and Gunderson observed a number line advantage.
Students who were trained to use a number line to represent fraction
magnitudes were more successful on a later, symbol-only fraction
comparison task than students who were trained to use circular area
models. In contrast, across two experiments, Kaminski (2018) found no
advantage of visual models for understanding fraction addition in
comparison to instruction without visual models, and even observed
some detrimental effects of using number lines for learning fraction
addition.

Across this limited evidence, it remains unclear whether number
lines better support children’s understanding of fractions, and fraction
arithmetic, and under what conditions. Furthermore, as demonstrated
by Kaminski (2018) findings, although external visual models can help
learners to generate internal, mental models of complex relationships
(e.g., Butcher, 2006) and support accurate problem solving (e.g.,
Cooper, Sidney, & Alibali, 2018; Larkin & Simon, 1987) in comparison
to text alone with no visual model, including diagrams in practice and
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instruction does not always lead to increased learning (e.g., Kaminski &
Sloutsky, 2013; Bergey, Cromley, Kirchgessner, & Newcombe, 2015).
Finally, because the studies conducted by Hamdan and Gunderson
(2017) and Kaminski (2018) have focused primarily on fraction mag-
nitudes and simple, common denominator fraction addition, little is
known about how visual representations support, or fail to support,
children’s effective reasoning about other arithmetic operations.

1.3. Fraction division

In the current study, we focus on fraction division given children’s
(Sidney & Alibali, 2015, 2017) and even adults’ (Ma, 1999; Sidney,
Hattikudur, & Alibali, 2015) relatively poor performance on common
measures of conceptual understanding of fraction division. Within ra-
tional number arithmetic, division is arguably the most difficult to re-
present and the least well understood arithmetic operation (see Ball,
1990; Dixon, Deets, & Bangert, 2001; Ma, 1999; Sidney, Chan, &
Alibali, 2013; Siegler et al., 2011). Thus, we targeted fraction division
with an aim to elicit sound conceptual models of the most challenging
fraction concept covered in elementary school mathematics.

Two common conceptual models for reasoning about division are
quotitive models of division and partitive models of division. When re-
presenting a quotitive model of division, children must reason about the
magnitude of the first operand (i.e., the dividend), the magnitude of the
second operand (i.e., the divisor), and the quotient as an indicator of
the relative size of the divisor to the dividend (i.e., how many times
does the divisor “fit” into the dividend). In a partitive model of division,
children also need to represent the magnitude of the first operand (i.e.,
the dividend), but represent the magnitude of the second operand (i.e.,
the divisor) as a number of equal groups or segments and the quotient
as the magnitude of each group or segment. Although children use both
partitive and quotitive models to reason about whole number division
(Sidney et al., 2013), children tend to rely on quotitive models of di-
vision when reasoning about fraction division (Fischbein, Deri, Nello, &
Marino, 1985).

Given the nature of quotitive models of division, we expected that
number lines would better elicit sound conceptual models of fraction
division than area models. First, quotitive models of division, also
called measurement models of division (e.g., Cramer, Monson, Whitney,
Leavitt, & Wyberg, 2010), rely on the conceptualization of fractions as a
measurement, which number lines are thought to highlight (e.g., Moss
& Case, 1999). Second, not only do linear models, such as number lines,
appear to effectively support children’s reasoning about individual
fraction magnitudes (e.g., Moss & Case, 1999; Siegler et al., 2011; Fazio
et al., 2016), which is a fundamental first step towards constructing a
conceptually-sound visual model of division, we also expected that they
would also afford reasoning about the relative magnitudes of operands.
A number line allows students to represent more than one numerical
magnitude, or operand, on a single, common scale (e.g., both 4 and 1/5
from the fraction division problem 4÷1/5 can be represented relative
to 0 on a single number line that ranges from 0 on the left to 6 on the
right), with 0 as a common anchor point. This may better allow learners
to directly perceive and compare the relative magnitudes of the divi-
dend and the divisor, which may afford more accurate reasoning about
the quotient as well.

1.4. Current study

The primary goal of the current study was to examine whether the
nature of visual models shape children’s ability to reason about the
conceptual relationships between dividend, divisor, and quotient in
fraction division. Furthermore, given the mixed evidence for the utility
of visual models for learning about fraction arithmetic (Kaminski,
2018), we examined whether visual models do provide support for
children’s emerging fraction division understanding in contrast to rea-
soning without visual models. Thus, in the current study, we

investigated whether asking children to solve fraction division pro-
blems using a number line, an area model, or no visual model at all
resulted in more conceptually-sound, and successful approaches to
reasoning about fraction division. To capture their conceptual under-
standing and interpretation of the relationship between dividend, di-
visor, and quotient, we inspected whether children’s written work on
researcher-provided visual models reflected conceptually-sound models
of division. To capture children’s problem-solving success, we measured
children’s generation of a correct quotient, regardless of the child’s
solution method. Critically, we observed children’s approaches to
fraction division understanding near the beginning of their business-as-
usual fraction division instruction, before learning about complex
fraction division (i.e., division with a proper fraction or mixed number).
This allowed us to observe the differential effects of visual models on
children’s emerging ideas about fraction division, rather than rote
knowledge of procedures, such as invert-and-multiply.

1.5. Hypotheses

We hypothesized that asking children to use visual models to reason
about fraction division would be beneficial for their problem solving
and reasoning. First and foremost, we expected a number line advantage,
such that children who solved problems with a number line would have
higher accuracy rates, and be more likely to generate conceptual
models of division, than children in any other experimental condition
(H1a). Among the remaining children, we expected a visual model
advantage such that those who solved problems with an area model
would have greater success than those who solved problems with no
visual model (H1b). Finally, we planned to compare children’s accuracy
in each area model condition, rectangular area and circular area, to
examine whether the more linear, continuous rectangular model would
support accuracy in comparison to discrete circles (H1c).

Furthermore, we hypothesized that the number line advantage was
due in part to differences in how number lines and circles afford re-
presenting the given operands (H2). We expected that some children,
particularly those provided with circles and rectangles, might choose to
represent each operand on different parts of the diagram (i.e., on dif-
ferent circles), which might disrupt their ability to reason about the
relative magnitudes of the two operands. In contrast, we expected that
children would be less likely to represent magnitudes on two separate,
non-overlapping segments of the number line diagrams, given that they
afford representing each magnitude relative to the same, common
endpoint (i.e., starting at 0).

Additionally, we explored our data in two ways. First, we explored
whether children’s confidence and perceptions of difficulty differed
across visual models. Although we expected number lines to afford
sound conceptual reasoning about fraction division, we expected that
children might be more familiar with area models, and thus more
confident in their performance, since students in the US are introduced
to dividing area models into equal fractional shares as early as first
grade (Confrey, Maloney, Nguyen, Mojica, & Myers, 2009). Given
previous research (Wall, Thompson, Dunlosky, & Merriman, 2016) that
showed children were more accurate and confident when estimating
the magnitudes of numbers within smaller, more familiar numerical
ranges than when estimating numbers within larger, less familiar nu-
merical ranges, we sought to explore the possibility that children may
be more confident, and report less difficulty, with more familiar area
models. Second, we explored whether the diagrams used during the
focal problem-solving task affected children’s reasoning on two other
types of tasks designed to assess conceptual knowledge of fraction di-
vision: story generation and story problem-solving.
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2. Method

2.1. Power analysis

To determine our necessary sample size, we ran an a priori power
analysis based on our initial plan of using ANCOVA to examine the
effect of experimental visual model condition on children’s perfor-
mance during the focal task. Based on prior work examining the role of
diagrams in learning (e.g., Beitzel & Staley, 2015; Butcher, 2006;
Moreno, Ozogul, & Reisslein, 2011), we anticipated that differences in
visual model condition would explain about 6% of unique variance in
performance, ηp2= 0.06, over and above our covariates. Using the pwr
package (Champely, 2015) in R, we determined that a sample size of
120 participants was necessary for 80% power to detect an effect of this
size for a 1 df test in a model that included fixed effects of condition and
three covariates (grade, gender, and problem order).

2.2. Participants

Participants were 123 children in late Spring of 5th grade or Fall of
6th grade (M age= 11.6y, SD=1.4y; 45.6% girls; 75.0% White) from
one public intermediate school in the midwestern United States. State
standards for mathematics education are aligned with the CCSSM, with
fraction division first introduced in 5th grade. A small proportion of
children at this school qualify for the free and reduced-price lunch
program (18.30%). We obtained mathematics achievement data from
the Spring before study enrollment for 113 participants, missing data
was primarily from children who had not completed a standardized
assessment the prior Spring due to transferring into the district.

2.3. Tasks

2.3.1. Diagram task
Each child was randomly assigned to one of four between-subjects

visual model conditions (see Fig. 1) as they solved 18 fraction division
problems: (a) circular area (n=33), (b) rectangular area (n=29), (c)
number line (n= 31), and (d) no visual model provided (n=30). Each
provided diagram represented six whole units (e.g., six circles) that
were partitioned into the denominator units of the divisor. By providing

partitioned diagrams, we facilitated students’ use of the diagrams and
controlled for differences in students’ ability to represent fraction
magnitudes precisely. The problems included unit fraction, proper
fraction, mixed number, and whole number operands, allowing us to
examine whether the effects of diagram varied across problem type (see
Table 1). Each problem was presented on a separate page and in one of
two predetermined random orders across all conditions; half of children
were assigned to each order. After solving each problem, children rated
their confidence in solving each problem (How confident are you that you
solved the problem correctly? 0% definitely did not − 100% definitely did)
and the difficulty level of each question (How difficult was it to answer
this problem? not difficult at all [1] to very difficult [4]) on the bottom of
that problem’s page.

2.3.2. Far transfer tasks
Participants generated stories to represent two fraction division

problems (e.g., Write a story problem that represents 4÷ 1/5.) (see
Sidney & Alibali, 2015; Sidney et al., 2015) and also solved two fraction
division story problems (e.g., Shay wants to spend half of her summer
volunteering for charities. If she wants to spend an equal amount of
time volunteering for three charities, what fraction of her summer will
she spend volunteering for each charity?).

2.4. Procedure

Participants were tested individually with a trained postdoctoral
(first author) or undergraduate researcher in a quiet location in their
school. The Diagram Task was introduced with a script printed on the
first page of each packet and read aloud by the researcher. We began by
telling children that we were interested in the strategies they used to
solve “new kinds of math problems”, and asking children to show their
work for each problem. Then, the researcher demonstrated “how you
can show your work” using a whole number division example (6÷2). In
the example, the researcher spoke about making “a group of six” and
showing or thinking about “how big six is”, making “a group of two” and
showing or thinking about “how big two is”, and finding “how many times
a group of two goes into a group of six”. In the diagram conditions, the
researcher drew a diagram using the same type of diagrams included in
the child’s packet, demonstrating how to represent the dividend,

Fig. 1. Example problems from each condition. One example fraction division problem illustrated in each of the four between-subjects experimental conditions:
circular area model, rectangular area model, number line model, and no visual model (from top to bottom). Each child solved 18 problems in their visual model
condition.
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divisor, and quotient on the given diagram. In the no diagram condition,
the experimenter simply wrote the numerals ‘6’ and ‘2’. Apart from
instructions to “show” (diagram conditions) or “think about” (no dia-
gram condition) the magnitude of the numbers, the verbal description
of the example and the number of times the researcher paused to draw
or write were identical in all conditions.

We chose to model a whole number division problem for children
given previous research (Sidney & Alibali, 2017) suggesting that chil-
dren are more likely to successfully model fraction division im-
mediately after modeling whole number division. We chose to model
quotitive division given that children reason with both quotitive and
partitive models when demonstrating whole number division (e.g.
Sidney & Alibali, 2013), but they appear to favor quotitive division
when reasoning about division by a fraction (e.g., Fischbein et al., 1985;
Sidney & Alibali, 2017) and find quotitive division problems easier to
interpret and model than partitive division problems (English &
Halford, 1995; Watanabe, Lo, & Son, 2017; Zambat, 2015). Participants
completed all problems without feedback from the experimenter.

2.5. Coding children’s work

We coded for children’s accuracy and conceptual models on each
problem. Accuracy was defined as whether or not the child wrote the
correct answer to each problem somewhere on its page. All completed
problems were double-coded by two independent coders with high
agreement (agreement on 97.0% of trials). Disagreements often oc-
curred when children’s handwriting was poor, or when they generated
both a correct and incorrect answer on their page. All disagreements
were flagged and resolved through discussion until 100% agreement
was reached.

Furthermore, to examine the nature of the visual models that chil-
dren generated in their drawings, two coders coded children’s final
written work on each problem. Our coding scheme was adapted from
one used in prior work (Sidney & Alibali, 2017; Sidney, 2016) and was
aimed at categorizing children’s overt strategies on fraction division
problems. First, we coded whether children accurately represented the
magnitude of each operand. Then, we coded the nature of the re-
lationship between the operands (see Table 2). For example, some
children represented a division relationship, while others represented
other operations such as subtraction or addition, and still others drew
incomplete diagrams, for example, diagrams that only included re-
presentations of each operand but did not represent the relationship
between operands. Critically, children’s work on each problem was
categorized as reflecting quotitive division, partitive division, or neither
(see Fig. 2 for examples of student work). “Quotitive division” was
coded when children fully partitioned the dividend into segments as

large as the divisor (see Fig. 2, Panel A). “Partitive division” was coded
when children divided the dividend equally into a number of segments
specified by the divisor (see Fig. 2, Panel B). All other models were
classified as “other” (see Fig. 2, Panels C–F). Agreement for division
model coding was also high (94.4% agreement). All disagreements were
flagged and resolved through discussion until 100% agreement was
reached.

Finally, to examine whether number line models and circular area
models afford different types of spatial relationships when representing
two operands on the same diagram, we coded whether or not the op-
erands were represented on separate, non-overlapping parts of the
diagram (see Fig. 2, Panel E for an example). For example, many chil-
dren used different circles to represent the magnitudes of the dividend
and the divisor. Some children even drew additional circles to do so.
Two independent coders double-coded half of the data, and agreement
was high (99.7%). To analyze this data, we distinguished between
children who never represented operands separately and children who
did so on at least one trial.

3. Results

3.1. Random assignment

Children’s achievement scores did not differ across conditions, F(3,
109)= 1.16, p= .33, and the distribution of boys and girls did not
differ across conditions, χ2(3, N=123)=0.60, indicating successful
random assignment to experimental condition.

3.2. Analytic overview

When conducting our power analysis, we had planned to use
ANCOVA to examine our data. However, we revised our planned ana-
lysis to account for the non-independence due to item (see Barr, Levy,
Scheepers, & Tily, 2013) and to account for variability in problem type.
We used two logistic mixed effect regression models to test our primary
hypotheses about children’s accuracy and conceptual models on the
diagram task using the lme4 package (Bates, Maechler, Bolker, &
Walker, 2015) in R. Each model estimated fixed effects of visual model
condition, problem type, problem order, grade, and gender, the by-
participant and by-item random intercepts, the by-participant random
slope of divisor type, and the by-item random slope of condition.1 By
including both by-participant and by-item random effects, these models

Table 1
Examples of Fraction Division Problems by Problem Type and Accuracy by Condition.

% of Problems Correctly Answered

Dividend Divisor Problem 1 Problem 2 Avg. Circ. Rect. NL None

Unit fraction Unit fraction 1/3÷ 1/9= ? 1/4÷1/8= ? 41% 36% 30% 56% 38%
Proper fraction Unit fraction 4/5÷ 1/5= ? 2/3÷1/6= ? 42% 40% 38% 55% 35%
Whole number Unit fraction 6÷ 1/3= ? 4÷1/4= ? 39% 40% 29% 52% 33%
Mixed number Unit fraction 2 1/4÷ 1/4= ? 3 3/5÷1/5= ? 33% 32% 32% 46% 23%
Proper fraction Proper fraction 2/3÷ 2/9= ? 3/4÷3/8= ? 39% 35% 26% 54% 37%
Whole number Proper fraction 6÷ 2/3= ? 2÷2/5= ? 41% 33% 42% 61% 25%
Mixed number Proper fraction 5 1/3÷ 2/3= ? 4 1/6÷5/6= ? 31% 26% 36% 45% 18%
Unit fraction Whole number 1/3÷ 2=? 1/2÷4= ? 23% 16% 14% 28% 33%
Proper fraction Whole number 2/5÷ 4=? 3/4÷6= ? 15% 16% 6% 10% 27%

Overall Percent Correct 33% 31% 28% 45% 30%

Average Confidence Rating 68% 77% 58% 72% 62%

Average Difficulty Rating 1.94 1.64 2.16 1.98 2.03

1 The de-identified coded dataset, coding manuals, and R script for the ana-
lyses are publicly available on Open Science Framework: https://osf.io/vq6cz/.

P.G. Sidney, et al. Contemporary Educational Psychology 58 (2019) 288–298

292

https://osf.io/vq6cz/


allow us to account for non-independence due to items (across parti-
cipants) and participants (across items). Although Barr and colleagues
(2013) recommend estimating all possible random slopes, maximal
models failed to converge; therefore, we did not estimate random slopes
for the covariates.

To represent our detailed hypotheses for visual model condition,
this factor was represented by a set of three contrast variables, each

representing a specific hypothesis: number line condition vs. all other
conditions (H1a), area model conditions vs. no visual model (H1b), and
circular area model vs. rectangular area model (H1c). We defined
problem type as the type of divisor in the problem (i.e., unit fraction,
proper fraction, and whole number), and this factor was represented by
a pair of contrast variables: whole number vs. fraction divisor, and unit
fraction vs. proper fraction divisor. We report Type III Wald χ2 for each

Table 2
Coding Conceptual Models from Diagrams.

Model Model Type Description (Op1, Op2=?) Examples (4 1/6÷5/6= ? & 3/4÷6=?)

Quotitive Division Division:
Correct

The magnitude of operand 1 (Op1) is represented and divided into
groups as big as operand 2 (Op2)

Drawing shows 4 1/6 divided into 5 groups of 5/6 (see Fig. 2A)

Partitive Division Division:
Correct

The magnitude of Op1 is represented and divided into the number of
groups specified by Op2

Drawing shows 3/4 divided into 6 equal parts (see Fig. 2B)

Switched Numbers Division:
Incorrect

A quotitive or partitive division model representing Op2, Op1 Drawing shows 6 divided into 8 groups of 3/4

Wrong Numbers Division:
Incorrect

A quotitive or partitive division model with incorrect operands Drawing shows 40 divided into 8 groups of 5

Multiplication Other Operation Op2 groups of Op1; Op1 groups of Op2 Drawing shows 3/4 iterated 6 times
Subtraction Other Operation One group of Op2 is represented within Op1 & either the remainder of

Op1 is highlighted as the answer or written work includes a
subtraction symbol

Drawing shows 4 1/6, one group of 5/6 is represented within 4 1/
6, the remaining area is bracketed (or labeled, see Fig. 2C)

Addition Other Operation Op1 and Op2 are represented as adjoining magnitudes and written
work includes an addition symbol

Drawing shows one segment of 4 1/6 and one adjoining group of
5/6. Above the diagram, the written work shows “4
1/6+ 5/6=5”

Discrete Units Other Operation One (or more) groups of Op2 are highlighted in each whole unit,
without fully accounting for the magnitude of Op1

Drawing shows 4 1/6; one group of 5/6 is drawn in each whole
unit, for a total of 4 groups of 5/6 (see Fig. 2D)

Numbers Only Numbers Only The magnitudes of Op1 and Op2 are represented, but the written work
does not represent a mathematical relationship between their
magnitudes

Drawing shows one group of 4 1/6 and one group of 5/6 (see
Fig. 2E)

Answer Only No Model Only the magnitude of the quotient is represented on the diagram Drawing shows the magnitude of 5
No Model No Model Only one operand is represented or the diagram is blank Drawing shows the magnitude of 5/6

A 
Problem 6: Use the diagram below to find the answer to 4 1/6 ÷ 5/6 = ?. Show your work and your answer using the diagram. 

B 
Problem 2: Use the diagram below to find the answer to 3/4 ÷ 6 = ?. Show your work and your answer using the diagram. 

C
Problem 6: Use the diagram below to find the answer to 4 1/6 ÷ 5/6 = ?. Show your work and your answer using the diagram. 

D
Problem 6: Use the diagram below to find the answer to 4 1/6 ÷ 5/6 = ?. Show your work and your answer using the diagram. 

E
Problem 6: Use the diagram below to find the answer to 4 1/6 ÷ 5/6 = ?. Show your work and your answer using the diagram. 

F 
Problem 6: Use the diagram below to find the answer to 4 1/6 ÷ 5/6 = ?. Show your work and your answer using the diagram. 

Fig. 2. Examples of student work. Panels A and B reflect accurate quotitive and partitive conceptual models of division, respectively. Panel C shows an inaccurate
subtraction model, Panel D shows an inaccurate discrete units model, Panel E shows an inaccurate numbers only model, and Panel F shows a drawing coded as no model.
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parameter, and the change in Akaike’s Information Criteria (ΔAIC) for
each model, as compared to the null model for each outcome.

3.3. Accuracy

As hypothesized (H1a), children in the number line condition were
more likely to accurately solve each fraction division problem than
children in any other experimental condition, OR=3.28, χ2(1)= 5.06,
p= .02. Children who solved problems in the number line condition
generated correct answers on about 45% of problems, on average,
whereas children who solved problems in the other conditions gener-
ated correct answers on around 30% of problems (see Table 1).
Somewhat unexpectedly (H1b), children who solved problems with
circular area models or rectangular area models were no more likely to
be accurate on each problem than children who solved problems
without visual models, OR=1.61, χ2(1)= 0.71, p= .40. Finally (H1c),
children who solved problems with rectangular area models were no
more likely to be accurate than children who solved problems with
circular area models. OR=0.64, χ2(1)= 0.53, p= .47.

Furthermore, children’s likelihood of accuracy differed across pro-
blem type, such that children were more accurate on problems with
fraction divisors than whole number divisors, OR=17.59,
χ2(1)= 10.80, p < .01. Children were equally accurate on problems
with unit fraction divisors and proper fraction divisors, OR=1.48,
χ2(1)= 1.68, p= .19. On average, children only solved 19% of whole
number divisor problems correctly, as compared to about 44% of
fraction divisor problems (see Table 1). There was no significant effect
of problem order, χ2(1)= 1.46, p= .23, or gender, χ2(1)= 1.00,
p= .32. Overall, sixth graders were more likely to be accurate than fifth
graders, OR=4.64, χ2(1)= 12.31, p < .01. Model AIC was reduced
relative to the null model, ΔAIC=−195.00.

3.4. Conceptual models

We analyzed the likelihood of generating a sound conceptual model
of division, either quotitive or partitive, among children in the visual
model conditions. Children in the no visual model condition were not
provided with a visual model nor instructed to show their work on a
diagram. There were almost no instances of spontaneously drawing
conceptually sound models of division in the no visual model condition
(3% of all trials), thus these children were excluded from the conceptual
model analysis altogether.

In line with our focal hypothesis (H1a), and observed patterns of
accuracy, children who were provided with number line models when
reasoning about fraction division were considerably more likely to
generate a conceptually-sound model of division on any given problem
than children in either area model conditions, OR=4.64, χ2(1)= 7.71,
p < .01. Children in the number line condition generated division
models on 52% of trials, whereas children in the rectangular area
condition generated division models on 35% of trials and those who
were given circular area models generated division models on only 22%
of trials. The likelihood of generating a conceptual model of division
was no different in each area model condition, OR=1.88,
χ2(1)= 0.46, p= .50.

In line with accuracy rates, children were more likely to generate
conceptual models on fraction divisor problems than whole number
divisor problems, OR=29.39, χ2(1)= 7.64, p < .01, but equally
likely on unit and proper fraction problems, OR=1.04, χ2(1)= 0.01,
p= .91. Problem order, χ2(1)= 0.93, p= .34, and child gender,
χ2(1)= 1.15, p= .22, did not predict generating conceptual models;
however, sixth graders were more likely to generate conceptual models
of division, χ2(1)= 6.18, p= .01. Model AIC was reduced relative to
the null model, ΔAIC=−222.00.

To provide some insight on the number of children who may have
experienced a number line advantage, we also examined the percentage
of children in each condition who consistently generated sound

conceptual models on a majority of trials. The majority (71%) of chil-
dren who demonstrated their work on a number line consistently drew
accurate models of either quotitive or partitive division. In contrast,
many fewer did so in the circular (21%) or rectangular (34%) condi-
tions. A logistic regression analysis revealed the odds of consistently
generating a division model among children in the number line con-
dition were nearly 10 times greater, OR=9.83, χ2(1)= 16.01,
p < .01, than among children in the circular condition, and over five
times greater, OR=5.30, χ2(1)= 8.60, p < .01, than those in the
rectangular condition, controlling for problem order, p= .96, gender,
p= .04, and grade, p= .02. Model AIC was reduced relative to the null
model, ΔAIC=−16.18.

3.5. Representing magnitudes

As expected, number lines supported children’s generation of con-
ceptually-sound models of fraction division. Thus, we further tested our
hypothesis that the number line advantage may be due in part to dif-
ferences in how children represent the relative magnitudes of each
operand on the provided diagram. We examined the number of children
in each visual model condition who ever represented the operands se-
parately, rather than overlapping on the same whole unit, and found a
significant effect of condition, χ2(2, N=93)=23.16, p < .01. No
child in the number line condition drew operands on separate segments
of the number line; when children represented both operands, they
always represented them relative to the same, common endpoint. In
contrast, about one-half (15/33) of the children in the circular area
condition represented the operands on separate circles on at least one
trial, and about one-third (9/29) of the children in the rectangular area
condition represented the operands on separate rectangles at least once.

Given these patterns, we also explored whether children’s rates of
representing operands separately were related to their rates of gen-
erating conceptually sound models of division, among children in the
area model conditions using a general linear model. Indeed, children
who represented operands separately on a greater proportion of trials
generated fewer conceptual models of fraction division, b=−0.02, t
(56)=−3.04, p < .01, controlling for area model condition, p= .58,
order, p= .65, gender, p= .20, and grade, p= .02; total R2=0.31.

3.6. Confidence and difficulty ratings

Next, we examined children’s confidence ratings, which ranged
from 0 (definitely did not [solve correctly]) to 100 (definitely did),
M=65.49, SD=23.15, and difficulty ratings, which ranged from 1
(not difficult at all) to 4 (very difficult), M=1.94, SD=0.80. Confidence
and difficulty ratings were analyzed using linear mixed effects models
similar in structure to those used for accuracy and conceptual models,
but with visual model condition represented by a different set of con-
trast variables. Because we observed that children in the circular area
condition had, on average, slightly higher ratings of confidence and
lower ratings of difficulty than the other children (see Table 1), our
contrast codes represent pairwise comparisons between the circular
area condition and each remaining condition. We report the Type III
Wald F tests using the Kenward-Roger approximation as implemented
by car (Fox & Weisberg, 2011).

In contrast to patterns of accuracy, there was no significant effect of
visual model condition on children’s confidence ratings, F(3,
120.17)= 2.49, p= .06, and no effects of problem order, p= .62 or
gender, p= .80. In line with patterns of accuracy, there was a sig-
nificant effect of divisor type, F(2, 32.67)= 5.94, p < .01, such that
children were more confident on problems with a fraction divisor than
those with a whole number divisor, F(1, 47.52)= 11.75, p < .01. Also,
children in 6th grade were more confident than those in 5th grade, F(1,
123.97)= 4.08, p < .05. There were no differences in children’s rat-
ings of difficulty across visual model condition, F(3, 20.32)= 2.88,
p= .06, and no effects of divisor type, p= .24, problem order, p= .73,
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grade, p= .07, or gender, p= .71.

3.7. Far transfer tasks

Finally, we explored children’s performance on four far transfer
tasks, two story generation tasks and two story problem solving tasks,
to examine whether visual model condition during earlier problem-
solving had any lasting effects on children’s performance on other tasks
designed to assess conceptual understanding of fraction division. To
analyze these data, we fit separate logistic regression models regressing
accuracy on visual model condition, grade, and gender. Children’s
performance on each item did not vary by condition,
0.55 < χ2(3) < 6.56, 0.09 < ps < 0.93, 94 < Ns < 104, sug-
gesting that the effects of visual models on children’s conceptual un-
derstanding of fraction division were constrained to problems with
which those visual models were presented. In other words, children
who solved problems with number lines, who were likely to display
conceptual understanding of fraction division in their drawings using
number lines, were no more likely to generate conceptually-sound so-
lutions to far transfer items when diagrams were no longer present.
Furthermore, we noted that although several students drew diagrams to
help support their story problem-solving (n= 30), only seven children
drew number line diagrams.

4. Discussion

4.1. Summary of findings

As expected, children who were asked to demonstrate their rea-
soning on number lines when solving fraction division problems were
more accurate problem-to-problem than were children asked to use
area models or no visual model at all. However, somewhat un-
expectedly, we did not observe any advantages of using area models to
show work during fraction division problem solving. Instead, problem-
to-problem accuracy was similar across the two area model conditions
(i.e., circular and rectangular), and no higher than for those children
who solved fraction division problems without a visual model. Further,
this pattern of results, revealing a number line advantage, was also
apparent for children’s likelihood of producing a sound conceptual
model of fraction division. Strikingly, over twice as many children who
solved problems with number lines consistently drew sound conceptual
models of division across different types of problems than in the other
visual model conditions. Sixth graders were more accurate, confident,
and likely to produce sound conceptual models of fraction division than
were fifth graders.

4.2. Visual models for fractions

Overall, our findings suggest that visual models, such as diagrams,
can support children’s thinking about the conceptual structure of divi-
sion, however, not all visual models are equally effective at supporting
conceptual understanding. Number lines, as compared to area models
or no visual models at all, elicited conceptually accurate strategies
across a range of problem types and consistently across the majority of
problems. Our qualitative analysis of children’s diagrams suggests that
one reason that the number line may have afforded an advantage over
the area models is that children were more likely to accurately re-
present the magnitude of each operand relative to the same common
endpoint, as opposed to representing the operands on separate circles or
rectangles.

One potential limitation of this finding is that the visual models we
provided were pre-segmented into divisor units to take some of the
drawing demands off of the children so that they could more effectively
show their fraction division understanding. This pre-segmentation may
have led participants to rate the circle problems as less difficult than
they would have rated unsegmented circles given that research in

mathematics education (Myers, Confrey, Nguyen, & Mojica, 2009) has
shown that children find it particularly difficult to partition circles.
Future research could investigate the impact of asking students to
construct units on empty or unsegmented number lines or unpartitioned
whole shapes on fraction division problem solving.

All the children in our sample viewed a whole number division
example, using a visual model consistent with their condition assign-
ment, prior to completing the fraction division diagram problem-sol-
ving task. Prior research has demonstrated that children in 5th and 6th
grade are often more successful at modeling fraction division im-
mediately after modeling whole number division (Sidney & Alibali,
2015, 2017). Because we reminded children of quotitive division with
whole numbers, our findings may provide evidence that children who
reasoned with number line diagrams were more likely to transfer ap-
propriate ways of reasoning about division from the whole number
example to the fraction division problems.

Although children often have an underdeveloped conceptual un-
derstanding of fraction division (e.g., Mack, 2001; Sidney & Alibali,
2017), many children in our sample, and particularly those who rea-
soned with a number line, generated conceptual models of fraction
division that mirrored our whole number example: they represented the
magnitude of the first operand, then represented the magnitude of the
second operand, and finally drew as many groups or segments as big as
the second operand that “fit” in the first operand. This evidence of
transfer may be one promising sign of integration across whole numbers
and fraction concepts (see Siegler et al., 2011). Future work could more
closely examine whether the type of example problem (quotitive vs.
partitive; whole number vs. fraction division vs. other fraction opera-
tion; whole number vs. fraction divisor) differentially impacts problem-
solving performance, and whether analogical transfer underlies the
number line advantage in the current study.

4.3. Limitations

Here, we have demonstrated that there is a number line advantage
for fraction division problem solving. However, the current study leaves
open the question of whether number lines also uniquely afford benefits
when students learn about fraction division in the lab and in real
classrooms. Although this study does suggest that number lines may
support children’s emerging fraction division conceptualizations, it re-
mains an open question as to which order the visual models should be
introduced (e.g., number lines first then area models next) during
classroom instruction to optimize student learning. For example, our
study does not rule out the possibility that area models may have
learning benefits, perhaps when included along with number lines.

Furthermore, we focused on fraction division, given its difficulty,
limiting the findings’ generalizability to children’s learning of other
fraction operations. For example, our findings stand in contrast to
Kaminski (2018) study of 3rd grade children’s use of visual models
when learning about fraction addition, in which there was no number
line advantage and some evidence of a number line disadvantage. One
possible reason for these contrasting findings may be related to differ-
ences in the ages of the participants. Area models may be more familiar
than number lines among third graders given that they are introduced
earlier in Common Core-aligned curricula (as early as 1st grade under
the Geometry strand 1.G.A.3), though age alone seems unlikely to ex-
plain this difference given the number line advantage among similarly
aged children learning fraction magnitudes (Hamdan & Gunderson,
2017). Another possibility is that differences may arise from differences
in how the number line was used in these studies. Number lines may be
most advantageous when used to highlight numerical magnitude as a
distance from zero, as we have done in our example problem in the
current study.

A third possibility is that visual models afford different approaches
to reasoning and representing the conceptual structure of arithmetic
operations, and addition and division benefit from different
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affordances. In quotitive division, the ability to compare the relative
magnitudes of each operand is a key component to representing the
division relationship, and our qualitative analysis suggests that number
lines afford representing the operands in ways that allow this com-
parison process to take place. Comparing the relative size of two op-
erands may be helpful for subtraction as well, but may not be as helpful
for addition and multiplication. For example, if a child conceptualizes
fraction multiplication as a scaling operation (e.g., 5×¼ as finding a
magnitude that is ¼ the size of 5), area models may better support this
conceptualization. Thus, we view this work as only a first step towards
understanding the affordances of various visual models for supporting
key ways of conceptualizing fraction arithmetic. Because the con-
ceptual models themselves are varied across operations, we expect that
the effects of visual models may also vary across arithmetic operations.
If this is the case, it would also raise new questions about the optimal
times to introduce each visual model to children across the entire span
of fraction instruction.

Finally, based on prior work linking confidence and familiarity in
math (Fitzsimmons, Thompson, & Sidney, in preparation; Wall et al.,
2016), we sought to explore whether children’s supposed familiarity
with area models might lead them to feel more confident when solving
problems with area models and to report less difficulty while using area
models. Although children’s confidence ratings for the circular area
condition were nominally higher than the other conditions, we found
no reliable differences in confidence and difficulty across visual model
condition. We also do not have specific information about the famil-
iarity of these visual models within this sample, limiting our ability to
interpret the confidence and difficulty findings. For a full picture of how
familiarity with each type of visual model may impact children’s per-
ceived confidence, difficulty, and performance, it may be necessary to
assess the frequency with which children encounter these models across
many years during elementary instruction, as the nature of children’s
experiences with visual models may change over time. For example,
although circular area models are introduced in partitioning tasks very
early in elementary school, rectangular area models are recommended
(National Governors Association Center for Best Practices & Council of
Chief State School Officers, 2010) and often used to represent multi-
plication concepts (Shin & Lee, 2018; Tsankova & Pjanic, 2009; Webel
& DeLeeuw, 2016; Wu, 2011). Despite this limitation, it is still notable
that children’s confidence and difficulty ratings did not reflect the clear
patterns of successful conceptual reasoning.

4.4. Educational implications and future directions

Both the IES Practice Guide for Fractions (Siegler et al., 2010) and
CCSSM recommend the use of visual models to represent fraction op-
erations, yet it was unclear whether number lines and area models
would offer the same benefits to accuracy and conceptual under-
standing of fraction division. Even though we found a number line
advantage in the current study, we are not recommending that teachers
should avoid the use of area models in their classrooms when teaching
children to reason about fraction division. First, as previously men-
tioned, additional research is needed to examine children’s learning
from direct instruction that includes visual models with different fea-
tures. Second, representational fluency (Rau & Matthews, 2017) using
multiple types of visual models that highlight complementary aspects of
fraction concepts, is important, and there may be an optimal combi-
nation of visual models during instruction.

Future research is needed to investigate the types of classroom
lessons that most effectively convey a deep and multi-faced conceptual
understanding of fraction division that would support a transition to
flexible symbol-only problem solving for advanced mathematics topics.
This is especially true given that we did not see a lasting effect of visual
model condition on far transfer problems (e.g., story generation) that
did not include a researcher-generated visual model, suggesting that
substantive learning may not have occurred during the problem-solving

activity. It is unclear whether providing children with an explicit re-
minder (e.g., Gick & Holyoak, 1980) to draw a diagram to support their
stories would have improved the likelihood of transfer, or whether
simply asking children to solve more fraction division problems, pos-
sibly over the course of several sessions and with feedback, would have
better prepared them to spontaneously transfer to new, conceptually-
similar problems.

Another educational implication involved students’ perceptions of
problem difficulty and their confidence in solving the problems cor-
rectly. Children assigned to the circular area condition rated the frac-
tion division problems as nominally less difficult than did children in
the other visual model conditions. Also, children in the circular area
condition were more confident that they had correctly solved the pro-
blems than were children in the other conditions. Though these mean
differences were not significantly different, looking across our findings
on accuracy, conceptual models, and difficulty, number lines may be
“worth” their perceived difficulty, whereas circles may be unhelpful
despite students’ apparent comfort with them. In other words, our
findings suggest that teachers should not be reluctant to use number
lines even if their students appear to find them difficult. Further in-
vestigation is necessary to determine whether children’s perceived
comfort and familiarity with various visual models moderates their
effectiveness. If so, it may be important to introduce more effective
visual models, such as number lines, along with earlier fraction con-
cepts to provide adequate time for familiarity with these representa-
tions to develop.

Finally, we believe these findings have important implications for
pre-service and in-service teacher education. Generating conceptual
models for fraction division is challenging for both children (Sidney &
Alibali, 2015, 2017) and adults (Ball, 1990; Ma, 1999). Although the
number line is a promising representation for supporting children’s
reasoning about the relative magnitude of two quantities, prior research
on pre-service teachers’ fraction reasoning demonstrates their dis-
comfort and difficulty using linear models for representing fraction
operations (e.g., Luo et al., 2011). For teachers to effectively in-
corporate number line activities into fraction division instruction, they
must be proficient with these representations themselves. Thus, addi-
tional research is needed to more closely examine teacher and pre-
service teacher learning with and about number line models for fraction
operations.

4.5. Conclusions

The current study adds to a growing body of evidence that number
lines facilitate children’s accurate understanding of fraction magnitudes
and their conceptual understanding of the relationships between frac-
tion magnitudes as they solve fraction operation problems. Our results
can inform the implementation of the CCSSM that recommends the use
of visual models for representing fraction operations. Future work
should investigate ways to promote children’s use of visual models to
help them reason about fraction division problems even when diagrams
are not provided in given problems.
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