FUNDAMENTALS of GRANT WRITING

Presented by Theresa Ford

Kent State University at Stark
April 2015
WHERE DO YOU BEGIN?
Why? So that ...

- you understand the purpose of the grant

- it is clear to the funder that you have read the grant materials provided

- you budget appropriately for the grant
Example:

1. Applying for classroom computers

“Each grant will provide furniture, integrated technology, design, installation and post-occupancy evaluation for one of three classroom types ...”
Technology doesn’t always mean computers

Equipment doesn’t necessarily include technology/computers

Income inequality doesn’t always mean poverty

Innovative doesn’t mean repackaging what you already do

Small colleges may mean community colleges
• Answer the application questions (not the questions you would have preferred to answer)

• Be clear, specific, and detailed

• Don’t just restate the question

• Don’t write what the funder already knows
USE THE LANGUAGE OF THE GRANT MATERIALS

• Look for key words and phrases
 interdisciplinary, active learning, evidence-based,
 research-based, best practices, innovation, collaboration,
 capacity-building, etc.
• Use the grant name/program within the proposal

• Do not use acronyms without first writing out the phrase
Examples:

• Submit specific/general supporting documents
 – Letters of support/commitment
 – Sample of work
 – Video/photos of grant site

• Contact the program officer
Preparation to contact the program officer

- Read all the grant materials
- Write a brief summary of your project
- Have your elevator speech prepared
- Have a list of questions ready
- Listen carefully to suggestions, be prepared to modify ideas
- Do background research on the program officer
Who will review the grant – colleagues, a foundation board of trustees, a foundation subcommittee?
• Answer all the questions well and completely, not just the one describing your project/research/program.

• Include a timeline, tasks, and responsibilities

• Why is your project important
• What is the evidence of need?
 o that it is a worthwhile project?
 o that it will be successful?

• Do the preliminary analysis and background research, collect and analyze quantitative/qualitative data, and provide anecdotes.

• Summarize and present it in meaningful and interesting ways.
Future projections

The number of people in the UK with dementia will double in the next 40 years.

- 800,000 people with dementia in 2012
- 1,000,000 people with dementia in 2021
- 1,700,000 people with dementia in 2051

= 10,000 people
TIME OF DAY WHEN I TOOK MY PHOTOS

12:01 AM MORNING AFTERNOON 11:59 PM

52 PHOTOS
• Key word is realistic

• Check for the following in the guidelines
 – Match (cash or in-kind)
 – Indirect cost/overhead
 – Specific lists of what will/will not be funded

• Other sources of funding
• Consider all project costs
 – Salaries and benefits
 – Consultants or independent contractors
 – Student stipends or fellowships
 – Travel
 – Equipment, technology, materials, and supplies
 – Evaluation
 – Participant/student costs
 – Conferences, workshops
 – Training, professional development
 – Maintenance
 – Administrative support

• Will your project generate revenue?
• There is help!

• Kent’s Sponsored Program’s Office has much expertise in
 o developing budgets
 o costing out budget items
• Does the funder have its own criteria for evaluation?

• Is a program/project being evaluated or student learning being assessed or both?
DEVELOP A STRONG EVALUATION

• What are the goals, objectives, outcomes?
• How will you measure these goals?
• Do you have baseline data? Can you benchmark your data?
Propose an evaluation that appropriately represents the time, resources, and expertise that is needed and that you have?

Should you, and can you hire an evaluator?
FOLLOW THE FORMAT CRITERIA

• Review and follow the format criteria: margins, word counts, font types, font sizes, page lengths, page sizes, single- or double-spaced, Word or PDF document, etc.

• Consider the reviewers: add headings/subheadings, bullet points or numbered lists, provide graphics, photographs, or a video
A spectacularly sculpted amphitheater of calving ice envelopes upper Columbia Bay where Columbia Glacier retreated more than 20 km in the last 30 years. Emerging from the ice along the steep fiord walls are thousands of logs from old growth forests that were overrun by the ice a millennium or longer ago. The preserved logs comprise a record of glacial history and climatic change in the Gulf of Alaska, which, more broadly, epitomizes North Pacific climate. This dynamic and truly exceptional setting is the site of proposed fieldwork to recover and sample the newly unveiled logs (Figures 1 and 2). During fieldwork conducted in Columbia Bay nearly a decade ago, wood was recovered in the wake of the retreating glacier. Using dendrochronology the glacial and climatic history across the Gulf of Alaska was reconstructed (Figures 1 and 2) and the Columbia Bay tree-ring series are well established and have been used in several research studies. A photograph of this work was covered by NGS in the September 2004 issue of National Geographic Magazine.

Within the last decade Columbia Glacier has dramatically retreated 5 km further inland and is poised to split into several individual tributaries. The latest broadened de-glaciated landscape has uncovered forests and logs that have never been seen, visited, or sampled previously in the scientific community. The opportunity presented by sampling sites at this dynamic uncovered landscape of older trees and applying dendrochronological methods will provide more extensive tree-ring chronologies of the area and enrich our knowledge of the glacial history of the Gulf of Alaska, insights to glacier dynamics, and of climate change in the Gulf and the North Pacific. We propose to extend the earlier work at Columbia Bay by recovering logs at the retreating ice margin. Sampling would take place within the backdrop of the picturesque Chugach Mountains with adjacent to the modern glacier in calving and non-calving settings (Figure 1). Wood recovery will occur on steep slopes and rock overhangs, and possibly within ice caves along the margin of the ice-choked fiord. At this logistically challenging site, fieldwork would be performed primarily by helicopter and possibly by boat depending on ice conditions within the Bay. Contracts and permits with collaborators have already been obtained to conduct the fieldwork and collect the samples.

Scientific Value: The Columbia Glacier tree-ring chronology to date has allowed for tree-ring dating for a host of climate (Wiles et al., 2011; Wilson et al., 2007; Kauffman et al., 2009), archaeological (Wiles et al., in review), and palaeoecological (Wiles et al. 2009; Barcy et al. 2009; Reyes et al. 2006) studies. Assistance and Expertise Requested: Work within the upper bay at Columbia Glacier is a major logistical challenge. It may be that most of the new sites are only accessible via helicopter jumps and by boat depending on pack-ice conditions. Additional potential logistics include rope work and technical climbing gear in challenging sites and support gear in ice waters. During the previous field season coring and cutting of overrun trees was impossible at many sites because of the steep terrain and inaccessible field conditions. The land and forests that have emerged since our work in the Columbia Bay during the early 2000s are likely more difficult to access. Logs emerging from under the ice may be located in ice caves. Additionally, GPS mapping of the sample sites is important, but is challenging given the setting.

Along with the challenging logistics would be the compelling scientific story as wood from Columbia Bay has made a crucial link in the tree-ring record along the Gulf of Alaska (Figure 2). Tidewater glaciers contribute significantly to contemporary sea level rise and reconstructing there past behavior with respect to climate change can serve to predict model predictions that anticipate future stability of ice sheets and temperate glaciers in marine environments. It many ways it could be argued that Columbia Glacier is the flagship tidewater glacier in the Northern Hemisphere. Its well-documented catastrophic retreat and calving, that it has had on the shipping lanes of super tankers out of Valdez Alaska is legendary. Local Contact: Dr. Shad O’Neill, Research Geophysicist USGS Anchorage. Dr. O’Neill hosted Wiles and students at her home on Columbia Glacier camp in 2005. Together with University Colorado glaciologist Tad Pfeffer, Dr. O’Neill maintains a research permit with the National Forest Service that includes the use of helicopter in Columbia Bay. Wiles and students worked from the same permits in 2004.

Association with National Geographic Society: During the 2005 field season National Geographic photographer, Peter Essick accompanied us. One of Essick’s photographs of our Columbia Bay tree-ring work appeared in the National Geographic Magazine (September 2004 edition). Moreover, time-lapse movies of the Extreme Ice Survey are posted on the National Geographic website, which show ice flow and retreat of Columbia Glacier through 2007. Our previous funding by NGS (Grant #8246-07) in Glacier Bay National Park and Preserve and its ongoing scientific discoveries (Wiles et al., 2011, 2012, in review; Capps et al. 2011) have, in part, successful because of our past work in Columbia Bay developing a long >1000 year tree-ring record from the forests emerging from the ice. Sampling would take place within the backdrop of the picturesque Chugach Mountains with adjacent to the modern glacier in calving and non-calving settings (Figure 1). Wood recovery will occur on steep slopes and rock overhangs, and possibly within ice caves along the margins of the ice-choked fiord. At this logistically challenging site, fieldwork would be performed primarily by helicopter and possibly by boat depending on ice conditions within the Bay. Contracts and permits with collaborators have already been obtained to conduct the fieldwork and collect the samples. Sampling would take place within the backdrop of the picturesque Chugach Mountains with adjacent to the modern glacier in calving and non-calving settings (Figure 1). Wood recovery will occur on steep slopes and rock overhangs, and possibly within ice caves along the margins of the ice-choked fiord. At this logistically challenging site, fieldwork would be performed primarily by helicopter and possibly by boat depending on ice conditions within the Bay. Contracts and permits with collaborators have already been obtained to conduct the fieldwork and collect the samples.

Sampling would take place within the backdrop of the picturesque Chugach Mountains with adjacent to the modern glacier in calving and non-calving settings (Figure 1). Wood recovery will occur on steep slopes and rock overhangs, and possibly within ice caves along the margins of the ice-choked fiord. At this logistically challenging site, fieldwork would be performed primarily by helicopter and possibly by boat depending on ice conditions within the Bay. Contracts and permits with collaborators have already been obtained to conduct the fieldwork and collect the samples.

E. - The Brooks Range: In the Brooks Range, at the northern end of our transect, we will update existing tree-ring sites including Arrigetch Peaks (site 11) and a millennial-length record for Sukalapak (site 12; not updated since 1979), both adjacent to glacier locations (Figure 3, 7). M. Wilmking (see attached letter) has sampled extensively along an east-west transect of the Brooks Range, examining recent forest growth trends and climate response [Wilmking et al., 2004, 2005]. These data have been made available to provide context for the current project (sites 1-7, Figures 3, 7). In Years 1 and 2, Wilmking will collect additional samples from representative micro-environments at latitudinal treeline. Preliminary evidence suggests that the divergence signal at the Alaskan treeline sites might be the result of individual trees from differing microsites contributing different climate sensitivities to the overall chronology [Wilmking and Singh, in prep.]. We will test this hypothesis [see G – Hypotheses below] by expanding our sampling effort to represent the landscape and microsite structure of treeline in the Brooks Range.

We will also utilize a recently sampled, millennial length site on the Firth River in northeastern Alaska (Figure 5, Table 1, TRL-LDLR). The Firth record shows very similar trends to those of an elevational treeline white spruce spray record for the adjacent Yukon Territory (TTHH, AD 1099-2000, 89 series[D’Arrigo et al. 2004, 2007]). Both chronologies were standardized (Figure 8) to optimize retention of low-frequency trends, and generally show common variability in radial growth related to temperature over the past millennium. Both also correlate significantly with Northern Hemisphere annual temperatures since the middle 19th century. There is some indication, however, of decreased growth in recent decades in the TTHH chronology and additional data from the Firth River Wilmking et al. 2004) that may relate to temperature-induced drought stress. Estimated temperature optima for tree growth in Alaska and the Yukon site appear to have been exceeded in recent decades, coincident with the observed decline [Wilmking et al. 2004; D’Arrigo et al. 2004, 2007]. We will investigate this phenomenon of divergence further using the Firth River area chronology and tree-ring data from other sites along the Alaska transect.
Ask colleague, friend, partner to:

- Proofread for grammar/spelling
 - don’t rely on spell/grammar check

- Proofread for content
CONTACT
Theresa Ford
330.244.3580
133 Main Hall
tford15@kent.edu
WWW.kent.edu/stark/grants-sponsored-projects