The purpose of this study was to investigate the effects of example type, presentation type, and working memory on learning math procedures. Contextual, concrete, or abstract example manipulations were implemented into an interleaved or blocked sequence in order to highlight their potential additive benefits. Three experiments were conducted to that end. Experiments one and two found that interleaving math procedures is more important to learning than interleaving contextualized examples for fourth- and fifth-grade students. The results of experiment three indicated that working memory predicted learning whereas presentation or example type did not. It is likely that decreased spacing between interleaved math procedures attenuated the interleaved effect in Experiment 3. Taken together, the three experiments in this investigation demonstrate that interleaved practice of math procedures works under certain conditions. Namely, interleaved practice requires sufficient space between interleaved items if learning is to be enhanced.