Image
Mechatronics student uses a remote robot

Mechatronics Engineering - B.S.

Are you passionate about robotics, automation and the intersection of mechanical, electrical and computer engineering? Do you want to be at the forefront of innovation in these exciting fields? If so, the B.S. degree in Mechatronics Engineering may be just what you're looking for.

Contact Us

Apply Now
Request Info
Schedule a Visit

Program Information

Program Description

Full Description

The Bachelor of Science degree in Mechatronics Engineering integrates mechanical, electrical, computer and controls engineering to understand automated machinery, specifically, how to design it and how to make it work. Mechatronics engineering revolves around the design, construction and operation of automated systems, robots and intelligent products, which result from the integration of software and hardware.

Using automated systems is becoming more popular for operating equipment or machinery on manufacturing lines, boilers and aircraft to reduce labor costs, increase precision and accuracy and provide quality and safety for workers. Mechatronic devices can be found in agriculture, hospitals, buildings, homes, automobiles, manufacturing plants, the toy and entertainment industry and in aids for the elderly and disabled.

Applicants to this program should understand that this is a math-intensive program.

Information on the program’s education objectives and student enrollment and graduation data can be found on the college website.

Students may apply early to the M.S. degree in Mechatronics Engineering and double count 9 credit hours of graduate courses toward both degree programs. See the Combined Bachelor's/Master's Degree Program policy in the University Catalog for more information.

Admissions

Admission Requirements

The university affirmatively strives to provide educational opportunities and access to students with varied backgrounds, those with special talents and adult students who graduated from high school three or more years ago.

Admission to the Mechatronics Engineering major is selective.

New Students: Admission into this major requires:

  • Minimum 3.0 high school GPA
  • Minimum 24 ACT composite score (minimum 24 ACT sub-scores in both English and mathematics) or a minimum 1160 SAT composite score (mathematics, critical reasoning and writing) effective for fall 2024 admission, scores are no longer required
  • Clear demonstration of an ability to be placed directly into MATH 12002 (or its equivalent); this will occur if the student is currently taking or has taken a calculus, pre-calculus or trigonometry course with a minimum C grade

Note: Admission to this program is contingent on students successfully placing into MATH 12002. Those who do not will have their major changed to Mechatronics Engineering Technology prior to their freshman year.

Students who do not meet these requirements will be admitted to the Mechatronics Engineering Technology major, provided that they meet those major requirements.

Current Students: Students accepted into the Mechatronics Engineering Technology major may request a change in major to Mechatronics Engineering as soon as placement into MATH 12002 has been demonstrated (prior to the beginning of freshman year). Otherwise, students may request to change their major to Mechatronics Engineering after their freshman year if they meet the following criteria:

  • Minimum 3.200 overall Kent State GPA (effective for fall 2024 admission, minimum 3.000 GPA will be required)
  • Minimum B grade in both MATH 12002 and PHY 23101 (effective for fall 2024 admission, minimum C grade will be required)

International Students: All international students must provide proof of English language proficiency unless they meet specific exceptions. For more information, visit the admissions website for international students.

Transfer Students: Admission into this major requires:

  • Minimum 12 credit hours in college-level coursework
  • Minimum 3.200 overall GPA (effective for fall 2024 admission, minimum 3.000 GPA will be required)
  • Minimum B grade in both MATH 12002 and PHY 23101 (or their equivalents) effective for fall 2024 admission, minimum C grade will be required

Transfer students who have completed less than 12 credit hours of college-level coursework will be evaluated on both collegiate and high school records and must submit a final high school transcript.

Learning Outcomes

Program Learning Outcomes

Graduates of this program will be able to:

  1. Identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics.
  2. Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors.
  3. Communicate effectively with a range of audiences.
  4. Recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts.
  5. Function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives.
  6. Develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions.
  7. Acquire and apply new knowledge as needed, using appropriate learning strategies.
Coursework

Program Requirements

Major Requirements

Major Requirements (courses count in major GPA)
ENGR 11000INTRODUCTION TO ENGINEERING 3
ENGR 13585COMPUTER AIDED ENGINEERING GRAPHICS 3
ENGR 15300INTRODUCTION TO ENGINEERING ANALYSIS USING MATLAB® 2
ENGR 15301INTRODUCTION TO ENGINEERING ANALYSIS USING MATLAB® LAB 1
ENGR 20000PROFESSIONAL DEVELOPMENT IN ENGINEERING 1
ENGR 20002MATERIALS AND PROCESSES 3
ENGR 23585ADVANCED COMPUTER AIDED DESIGN 3
ENGR 25200STATICS (min C grade)3
ENGR 25400DYNAMICS (min C grade)3
ENGR 33031PROGRAMMABLE LOGIC CONTROLLERS 3
ENGR 33041CONTROL SYSTEMS 3
ENGR 33222DIGITAL DESIGN FOR COMPUTER ENGINEERING 3
ENGR 33440ELECTRONIC DEVICES 3
ENGR 33442ELECTRONIC DEVICES LABORATORY 1
ENGR 35500SIGNALS AND CIRCUITS 3
ENGR 35501SIGNALS AND CIRCUITS LABORATORY 1
ENGR 42111STRENGTH OF MATERIALS FOR ENGINEERS 3
ENGR 42363MATERIALS SELECTION IN DESIGN AND APPLICATIONS 3
ENGR 43030MECHATRONICS 3
ENGR 43099MECHATRONICS CAPSTONE (ELR) (WIC) 13
ENGR 43220ELECTRICAL MACHINERY 3
ENGR 43580COMPUTER-AIDED MACHINE DESIGN 3
ENGR 47200SYSTEMS ENGINEERING 3
Programming Elective(s), choose from the following:3-4
CS 13001
COMPUTER SCIENCE I: PROGRAMMING AND PROBLEM SOLVING
CS 13011
CS 13012
COMPUTER SCIENCE IA: PROCEDURAL PROGRAMMING
and COMPUTER SCIENCE IB: OBJECT ORIENTED PROGRAMMING
ENGR 26220
ENGR 26222
PROGRAMMING FOR ENGINEERS
and PROGRAMMING FOR ENGINEERS LABORATORY
Additional Requirements (courses do not count in major GPA)
COMM 15000INTRODUCTION TO HUMAN COMMUNICATION (KADL) 3
MATH 12002ANALYTIC GEOMETRY AND CALCULUS I (KMCR) 25
MATH 12003ANALYTIC GEOMETRY AND CALCULUS II 5
MATH 21001LINEAR ALGEBRA 3
MATH 22005ANALYTIC GEOMETRY AND CALCULUS III 4
MATH 32044ORDINARY DIFFERENTIAL EQUATIONS 3
PHY 23101GENERAL UNIVERSITY PHYSICS I (KBS) (KLAB) 35
PHY 23102GENERAL UNIVERSITY PHYSICS II (KBS) (KLAB) 35
UC 10001FLASHES 101 1
Kent Core Composition6
Kent Core Humanities and Fine Arts (minimum one course from each)9
Kent Core Social Sciences (must be from two disciplines)6
Kent Core Additional3
Minimum Total Credit Hours:121
1

A minimum C grade must be earned to fulfill the writing-intensive requirement.

2

Applicants to this program should understand that this is a math-intensive program. Students admitted to the program must demonstrate prerequisite knowledge on a math placement exam (the ALEKS exam) prior to starting their first semester. Students who do not to obtain the minimum score required to place into MATH 12002 prior to the start of their first semester will be moved into the Mechatronics Engineering Technology program.

3

Calculus-based physics is a requirement for this program. No credit will be given to students who take other physics courses. Students who change their major to Mechatronics Engineering should understand that choosing to take a different physics sequence may result in up to 10 additional credit hours of required work.

Graduation Requirements

Minimum Major GPA Minimum Overall GPA
2.750 2.500
Roadmap

Roadmap

This roadmap is a recommended semester-by-semester plan of study for this major. However, courses designated as critical (!) must be completed in the semester listed to ensure a timely graduation.

Plan of Study Grid
Semester OneCredits
ENGR 20002 MATERIALS AND PROCESSES 3
!MATH 12002 ANALYTIC GEOMETRY AND CALCULUS I (KMCR) 5
UC 10001 FLASHES 101 1
Kent Core Requirement 3
Kent Core Requirement 3
 Credit Hours15
Semester Two
ENGR 11000 INTRODUCTION TO ENGINEERING 3
ENGR 15300 INTRODUCTION TO ENGINEERING ANALYSIS USING MATLAB® 2
ENGR 15301 INTRODUCTION TO ENGINEERING ANALYSIS USING MATLAB® LAB 1
!MATH 12003 ANALYTIC GEOMETRY AND CALCULUS II 5
!PHY 23101 GENERAL UNIVERSITY PHYSICS I (KBS) (KLAB) 5
 Credit Hours16
Semester Three
!ENGR 25200 STATICS (min C grade) 3
MATH 21001 LINEAR ALGEBRA 3
MATH 22005 ANALYTIC GEOMETRY AND CALCULUS III 4
!PHY 23102 GENERAL UNIVERSITY PHYSICS II (KBS) (KLAB) 5
 Credit Hours15
Semester Four
!ENGR 25400 DYNAMICS (min C grade) 3
MATH 32044 ORDINARY DIFFERENTIAL EQUATIONS 3
Programming Elective(s) 3-4
Kent Core Requirement 3
Kent Core Requirement 3
 Credit Hours15
Semester Five
COMM 15000 INTRODUCTION TO HUMAN COMMUNICATION (KADL) 3
ENGR 13585 COMPUTER AIDED ENGINEERING GRAPHICS 3
ENGR 20000 PROFESSIONAL DEVELOPMENT IN ENGINEERING 1
!ENGR 35500 SIGNALS AND CIRCUITS 3
!ENGR 35501 SIGNALS AND CIRCUITS LABORATORY 1
!ENGR 42111 STRENGTH OF MATERIALS FOR ENGINEERS 3
 Credit Hours14
Semester Six
ENGR 23585 ADVANCED COMPUTER AIDED DESIGN 3
ENGR 33031 PROGRAMMABLE LOGIC CONTROLLERS 3
ENGR 33041 CONTROL SYSTEMS 3
ENGR 33440 ELECTRONIC DEVICES 3
ENGR 33442 ELECTRONIC DEVICES LABORATORY 1
ENGR 42363 MATERIALS SELECTION IN DESIGN AND APPLICATIONS 3
 Credit Hours16
Semester Seven
ENGR 33222 DIGITAL DESIGN FOR COMPUTER ENGINEERING 3
ENGR 43030 MECHATRONICS 3
ENGR 43580 COMPUTER-AIDED MACHINE DESIGN 3
Kent Core Requirement 3
Kent Core Requirement 3
 Credit Hours15
Semester Eight
ENGR 43099 MECHATRONICS CAPSTONE (ELR) (WIC) 3
ENGR 43220 ELECTRICAL MACHINERY 3
ENGR 47200 SYSTEMS ENGINEERING 3
Kent Core Requirement 3
Kent Core Requirement 3
 Credit Hours15
 Minimum Total Credit Hours:121
Program Delivery
  • Delivery:
    • In person
  • Location:
    • Kent Campus
Student Achievement Data

Mechatronics Engineering; Enrolled

2018

2019

2020

2021

2022

2023

2 14 23 31 58 69

Mechatronics Engineering; Graduated

2018

2019

2020

2021

2022

2023

- - 1 3 6 5

Examples of Possible Careers and Salaries

Electrical engineers

4.6%

about as fast as the average

193,100

number of jobs

$100,830

potential earnings

Electronics engineers, except computer

1.4%

slower than the average

134,900

number of jobs

$107,540

potential earnings

Mechanical engineers

3.9%

about as fast as the average

316,300

number of jobs

$90,160

potential earnings

Notice: Career Information Source
* Source of occupation titles and labor data comes from the U.S. Bureau of Labor Statistics' Occupational Outlook Handbook. Data comprises projected percent change in employment over the next 10 years; nation-wide employment numbers; and the yearly median wage at which half of the workers in the occupation earned more than that amount and half earned less.