Quark-gluon Plasma

Dr. Michael Strickland's group at Kent State University will participate in a new Topical Theory Collaboration funded by DOE’s Office of Nuclear Physics to explore the behavior of heavy flavor particles. These particles are made of quarks of the “charm” and “bottom” varieties, which are heavier and rarer than the “up” and “down” quarks that make up the protons and neutrons of ordinary atomic nuclei. By understanding how these exotic particles form, evolve, and interact with the medium created during powerful particle collisions, scientists will gain a deeper understanding of a unique form of m...

Up until approximately 10^(-5) seconds after the Big Bang, the Universe was in a primordial state of matter called a quark-gluon plasma (QGP).  This is due to the fact that the early Universe was extremely hot and, in such a hot environment, normal matter, e.g., atoms, atomic nuclei, and even neutrons and protons, did not exist.  Fundamentally, the melting of protons of neutrons in the early Universe is predicted to occur at temperatures on the order of 2 trillion Kelvin, with this temperature being predicted by the fundamental theory governing quarks and gluons, which is called...